Tensor renormalization group approach to quantum fields on a lattice

Shinichiro Akiyama a), b)

^{a)} Endowed Chair for Quantum Software, University of Tokyo

^{b)} Institute for Physics of Intelligence, University of Tokyo

2022.5.26 @ ipi seminar, University of Tokyo

Contents

- 1. Background & Motivation
- 2. Introduction to the TRG approach
 - How to derive tensor network representations
 - TRG algorithms
 - Status of the TRG approach
- 3. Application to (3+1)d QFTs on a lattice
 - Complex ϕ^4 theory
 - NJL model
 - \mathbb{Z}_2 gauge-Higgs model
- \rightarrow scalar field
- → fermionic (Grassmann) field
- \rightarrow gauge field

4. Summary

Background & Motivation

Motivation of the field theory on a lattice

✓ The field theory (FT) is a fundamental tool to describe the high-energy physics → We usually consider (would like to solve) the path integral of a theory

Once we consider the FT on a lattice, we can regard the path integral just as a multiple integral

$$\int [\mathrm{d}\phi] \cdots \quad \rightarrow \quad \int \prod_{n \in \Lambda_d} \mathrm{d}\phi(n) \cdots$$

Numerical approaches give us chances to understand non-perturbative physics

Standard numerical approach for FT on a lattice

2/29

✓ Monte Carlo (MC) simulation (Stochastic numerical approach)

- \rightarrow based on the probabilistic interpretation of the given Boltzmann weight
- \rightarrow faces a serious difficulty when $P \sim e^{-S[\phi]}$ takes negative or complex value
- Sign problem (there are regimes where the MC does not work)
- Fermions (the Grassmann numbers) must be integrated out in advance

Research Motivation

✓ There are many systems suffering from the sign problem

QCD at finite density / real-time evolution / SUSY / ...

✓ Many unrevealed aspects must be remained

- → Thermodynamic limit (or zero-temperature limit) is almost inaccessible w/ the standard MC approach
- We need a numerical methodology which can give us an insight for these aspects

We would like to consider the TRG approach from these perspectives

Advantages of the TRG approach

- Tensor renormalization group (TRG) is a deterministic numerical method based on the idea of the real-space renormalization group
 - No sign problem
 - The computational cost scales logarithmically w. r. t. the system size
 - Direct evaluation of the Grassmann integrals
 - Direct evaluation of the path integral
- ✓ Applicability to the higher-dimensional systems

TRG is a kind of tensor-network method and the application of the TRG to the higher-dimensional systems has recently made remarkable progress

> Lagrangian (TRG) approach: Meurice+, arXiv:2010.06539, SA+, arXiv:2111:04240 Hamiltonian (TNS) approach: Bañuls-Cichy, Rep. Prog. Phys. 83(2020)024401

Cf. Tensor network & Machine Learning

5/29

Ex) Supervised image classification of the MNIST handwritten digits

Stoudenmire-Schwab, Advances in Neural Information Processing Systems 29(2016)4799

Martyn+, arXiv:2007.06082[quant-ph]

Ex) A new way to accurately compute higher-order derivatives of the free energy

Introduction to the TRG approach

Tensor renormalization group approach

29

Procedure of the TRG

1) Write down the target function X defined on lattice as a tensor contraction (tensor network)

ex. Partition function, Path integral, ...

2) Approximately perform the tensor contraction with a TRG

1) **TN representation for** X : (# of tensors in TN) = (# of lattice sites)

$$X \rightarrow \Sigma_{abcd} \dots T_{aiw} \dots T_{bjx} \dots T_{cky} \dots T_{dlz} \dots \dots$$

2) **TRG** : Block-spin trans. for T to reduce # of tensors in TN

$$\approx \Sigma_{a'b'c'd'\cdots}T'_{a'i'w'\cdots}T'_{b'j'x'\cdots}T'_{c'k'y'\cdots}T'_{d'l'z'\cdots}\cdots$$

TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Basic concept of TRG algorithm

We cannot perform the contractions in TN rep. exactly (too many d. o. f.)

Idea of real-space renormalization group Iterate a simple transformation w/ approximation and we can investigate thermodynamic properties

Information compression w/ the Singular Value Decomposition (SVD) $A_{ij} = \Sigma_k U_{ik} \sigma_k V_{jk} \approx \Sigma_{k=1}^{D} U_{ik} \sigma_k V_{jk}$ w/ $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_{\min(m,n)} \ge 0$

 $(A: m \times n \text{ matrix}, U: m \times m \text{ unitary}, V: n \times n \text{ unitary})$

TRG employs the SVD to reduce d. o. f. and perform the tensor contraction approximately

Higher-order TRG (= TRG w/ isometry insertion)

Xie et al, PRB86(2012)045139

9/29

 \checkmark Applicable to any *d*-dimensional lattice

Sequential coarse-graining along with each direction

of tensors are reduced to half

D: bond dimension Maximal size of tensors in the TRG algorithm is characterized by D

Anisotropic TRG (= TRG w/ indirect SVD)

Adachi-Okubo-Todo, PRB102(2020)054432

10/29

 \checkmark Applicable to any *d*-dimensional lattice

 Accuracy with the fixed computational time is improved compared with the HOTRG, which is a conventional algorithm to the higher-dimensional systems

Benchmarking w/ 2d Ising model (1/2)

Comparison of three types of TRG w/ D = 24

HOTRG calculation

11/29

HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same D The exact solution is well reproduced

Benchmarking w/ 2d Ising model (2/2)

12/29

ATRG shows better performance than the HOTRG at the same execution time

	2d ATRG	2d HOTRG	LN-TRG
Memory	$O(D^3)$	$O(D^4)$	$O(D^4)$
Time	$O(D^5)$	$O(D^7)$	$O(D^{6})$

Example: 3d Ising model w/ HOTRG

Xie et al, PRB86(2012)045139

\sim				•
(r	1 🕇 1	C	no	int
	ILI	La		IIIL
•••				

Method	T_c
HOTRG $(D = 16, \text{ from } U)$	4.511544
HOTRG $(D = 16, \text{ from } M)$	4.511546
Monte Carlo ³⁷	4.511523
Monte Carlo ³⁸	4.511525
Monte Carlo ³⁹	4.511516
Monte Carlo ³⁵	4.511528
Series expansion ⁴⁰	4.511536
CTMRG ¹²	4.5788
TPVA ¹³	4.5704
CTMRG ¹⁴	4.5393
TPVA ¹⁶	4.554
Algebraic variation ⁴¹	4.547

Good agreement with the Monte Carlo results

13/29

14/29

Current status of TRG in the higher-dimensional systems

Algorithm	Cost	Applications to 3d	Applications to 4d
HOTRG Xie et al, PRB86(2012)045139	D ^{4d-1} lnL	Ising Xie+, Potts model Wang+, free Wilson fermion Sakai+, \mathbb{Z}_2 gauge theory Dittirich+, Kuramashi-Yoshimura	O <u>Ising model</u> SA+, Staggered fermion w/strongly coupled U(N) Milde+
Anisotropic TRG (ATRG) Adachi-Okubo-Todo, PRB102(2020)054432	<i>D^{2d+1}lnL</i>	Ising model Adachi+, SU(2) gauge Kuwahara-Tsuchiya, ^O <u>Real ϕ^4 theory</u> SA+, ^O <u>Hubbard model</u> SA-Kuramashi ^O <u>Z₂ gauge-Higgs</u> SA-Kuramashi	$\begin{array}{c} \circ \underline{\text{Complex } \phi^4 \text{ theory SA+,}} \\ \circ \underline{\text{NJL model SA+,}} \\ \circ \underline{\text{Real } \phi^4 \text{ theory SA+}} \\ \circ \underline{\mathbb{Z}_2 \text{ gauge-Higgs}} \\ \underline{\text{SA-Kuramashi}} \end{array}$
Triad RG Kadoh-Nakayama, arXiv:1912.02414	D ^{d+3} lnL	Ising model Kadoh-Nakayama, O(2) model Bloch+, ℤ ₃ (extended) clock model Bloch+ Potts models Raghav G. Jha	-

D: bond dimension, *L*: linear system size, *d*: spacetime dimension

Application to (3+1)d QFTs on a lattice

(3+1)d complex ϕ^4 theory at finite density

- S. A., D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
- ✓ Efficiency of the TRG in the scalar theory w/ the sign problem
- ✔ Discretization (Regularization) of the continuous bosonic dof

<u>(3+1)d Nambu—Jona-Lasinio model at finite density</u>

- S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121
- ✓ Efficiency of the TRG in the fermion theory w/ the sign problem
- ✔ We can directly manipulate the Grassmann integral w/ the TRG

(3+1)d \mathbb{Z}_2 gauge-Higgs model

If time allows...

- S. A. and Y. Kuramashi, JHEP05(2022)102
- ✔ Efficiency of the TRG in the higher-dimensional LGT

Application to (3+1)d QFTs on a lattice

(3+1)d complex ϕ^4 theory at finite density

- S. A., D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
- ✓ Efficiency of the TRG in the scalar theory w/ the sign problem
- ✔ Discretization (Regularization) of the continuous bosonic dof

<u>(3+1)d Nambu—Jona-Lasinio model at finite density</u>

- S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121
- ✓ Efficiency of the TRG in the fermion theory w/ the sign problem
- ✔ We can directly manipulate the Grassmann integral w/ the TRG

(3+1)d \mathbb{Z}_2 gauge-Higgs model If the time of the second seco

If time allows...

- S. A. and Y. Kuramashi, JHEP05(2022)102
- Efficiency of the TRG in the higher-dimensional LGT

15/29

Complex ϕ^4 theory at finite density

- ✓ a typical system with the sign problem
- ✓ the Silver Blaze phenomenon
- \rightarrow thermodynamic observables at zero temperature are independent of μ up to μ_c
- ✓ a testbed for the methods intended to overcome the sign problem
 - Complex Langevin method Aarts, PRL102(2009)131601
 - Thimble approach
 Cristoforetti et al, PRD88(2013)051501
 Fujii et al, JHEP10(2013)147
 - World-line representation Gattringer-Kloiber, NPB869(2013)56-73

Discretization of the bosonic dof

 \checkmark Typical system w/ the sign problem at finite chemical potential μ

$$S = \sum_{n \in \Lambda_d} \left[-\sum_{\nu=1}^d \left(e^{\mu \delta_{\nu,d}} \phi_n^* \phi_{n+\nu} + e^{-\mu \delta_{\nu,d}} \phi_n \phi_{n+\nu}^* \right) + (2d+m^2) |\phi_n|^2 + \lambda |\phi_n|^4 \right]$$

✓ Employing the Gauss quadrature rule, we regularize (discretize) $\phi_n \in \mathbb{C}$ to obtain TN rep.

Polar-coordinate description: $\phi_n = r_n e^{i\pi s_n}$

Continuous d. o. f.	Discrete d. o. f.	Quadrature rule
$r_n \in [0, \infty]$ —	$\rightarrow \alpha_n \in \mathbb{Z}$	Gauss-Laguerre : $\int_0^\infty dr_n e^{-r_n} f(r_n) \approx \sum_{\alpha_n=0}^K w_{\alpha_n} f(r_{\alpha_n})$
$s_n \in [-1,1]$ —	$\rightarrow \beta_n \in \mathbb{Z}$	Gauss-Legendre: $\int_{-1}^{1} ds_n f(s_n) \approx \sum_{\beta_n=0}^{K} u_{\beta_n} f(s_{\beta_n})$

Algorithmic-parameters dependence

with $m = 0.1, \lambda = 1, \mu = 0.6, L = 1024$

17/29

Silver Blaze Phenomenon at finite density

18/29

Resulting $\langle n \rangle$ is qualitatively not bad even in the region with $\langle e^{i\theta} \rangle_{pq} \sim 0$. $\langle n \rangle$ stays around 0 up to $\mu \approx 0.65$ and shows the rapid increase with $\mu \gtrsim 0.65$. \rightarrow This is a typical feature of the Silver Blaze phenomenon

19/29

$\langle |\phi|^2 \rangle$: a discussion of the validity of numerical results with $m = 0.1, \lambda = 1, K = 64, D = 45$

Location of μ_c in the current ATRG calculations seems reasonable

Application to (3+1)d QFTs on a lattice

(3+1)d complex ϕ^4 theory at finite density

- S. A., D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
- ✓ Efficiency of the TRG in the scalar theory w/ the sign problem
- Discretization (Regularization) of the continuous bosonic dof

<u>(3+1)d Nambu—Jona-Lasinio model at finite density</u>

- S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121
- ✓ Efficiency of the TRG in the fermion theory w/ the sign problem
- ✔ We can directly manipulate the Grassmann integral w/ the TRG

(3+1)d \mathbb{Z}_2 gauge-Higgs model

If time allows...

- S. A. and Y. Kuramashi, JHEP05(2022)102
- Efficiency of the TRG in the higher-dimensional LGT

Expected phase diagram of the NJL model

T

✓ Effective theory of QCD

Nambu–Jona-Lasinio, PRD122(1961)345-358 Nambu–Jona-Lasinio, PRD124(1961)246-254

Chiral restoration is expected in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

Severe sign problem
 in cold & dense region

We apply the Tensor Renormalization Group (TRG) approach to investigate the 1st order chiral phase transition in cold & dense region

NJL model at finite density

✓ w/ the Kogut-Susskind fermion

- \rightarrow Single-component Grassmann variables w/o the Dirac structure
- \rightarrow Staggered sign function $\eta_{\nu}(n) = (-1)^{n_1 + \dots + n_{\nu-1}}$ with $\eta_1(n) = 1$

✓ μ : chemical potential

w/ $\alpha \in$

 \checkmark Continuous chiral symmetry for vanishing m :

$$\chi(n) \rightarrow e^{i\alpha\epsilon(n)}\chi(n), \quad \overline{\chi}(n) \rightarrow \overline{\chi}(n)e^{i\alpha\epsilon(n)}$$

 $\mathbb{R} \text{ and } \epsilon(n) = (-1)^{n_1+n_2+n_3+n_4}$

Auxiliary fermion fields to derive the TN rep.

SA-Kadoh, JHEP10(2021)188

22/29

Decompose hopping structures via

$$\mathrm{e}^{A\overline{\psi}_{n}\psi_{n+\mu}} = \left(\int\int\mathrm{d}\bar{\eta}_{n}\mathrm{d}\eta_{n}\mathrm{e}^{-\overline{\eta}_{n}\eta_{n}}\right)\exp\left[-\sqrt{A}\overline{\psi}_{n}\eta_{n} + \sqrt{A}\overline{\eta}_{n}\psi_{n+\mu}\right]$$

Original Z	TN rep for Z
$\int \operatorname{over} \left\{ ar{\psi}, \psi ight\}$	\int with the weight ${ m e}^{-\overline{\eta}\eta}$ over $\{ar{\eta},\eta\}$

Original Grassmann numbers are manifestly converted into the Grassmann numbers (= auxiliary fermion fields)

TN rep. for a simple fermionic model

Correspondence btw tensors and the G tensors

G tensor is a multi-linear combination like $\mathcal{T}_{\alpha\beta\overline{\beta}\overline{\alpha}} = \Sigma_{iji'j'} \mathbf{T}_{iji'j'} \alpha^i \beta^j \overline{\beta}^{j'} \overline{\alpha}^{i'}$

	Tensor	Grassmann tensor
index	integer	Grassmann number
contraction	$\Sigma_i \cdots$	$\int \int \mathrm{d}ar{\eta} \mathrm{d}\eta \mathrm{e}^{-\overline{\eta}\eta} \cdots$

Any TRG algorithm can be easily extended to investigate the Grassmann path integral

(We can easily encode the Grassmann algebra in a coefficient tensor $T_{iji'j'}$)

SA-Kadoh, JHEP10(2021)188, SA+, arXiv:2111:04240

25/29

Heavy dense limit as a benchmark

with $m = 10^4$, $g_0 = 32$, D = 30

This limit allows us to compare numerical results w/ exact analytical ones

cf. Powlowski-Zielinski, PRD87(2013)094509

GATRG well reproduces the analytical results, including the location of $\mu_c = \ln(2m) = 9.903$

Converging behavior in bond dimension

with m = 0.01, $g_0 = 32$, L = 1024

26/29

Chiral symmetry is restored in the region with $\mu \gtrsim 3.0$ A discontinuity at $\mu \approx 3.0$ indicates the 1st order transition

Ingredients of the equation of state

with m = 0.01, $g_0 = 32$, D = 55

Chiral phase transition in cold & dense region is 1st order

28/29

Summary

- The TRG approach does not suffer from the sign problem and allows us to investigate the thermodynamic limit
- No difficulty to apply the approach to scalar and fermion fields on a lattice
- We made the first application of the TRG to (3+1)d QFTs on a lattice, including scalar, fermion, and gauge theories.
- Steady progress of the TRG approach has been made toward numerical research on the regimes which are inaccessible with the standard MC approach, even in higher dimensions
- How about a higher-dimensional gauge theory w/ fermionic matter, like QED?

Application to (3+1)d QFTs on a lattice

(3+1)d complex ϕ^4 theory at finite density

- S. A., D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
- ✓ Efficiency of the TRG in the scalar theory w/ the sign problem
- Discretization (Regularization) of the continuous bosonic dof

<u>(3+1)d Nambu—Jona-Lasinio model at finite density</u>

- S. A., Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121
- Efficiency of the TRG in the fermion theory w/ the sign problem
- ✓ We can directly manipulate the Grassmann integral w/ the TRG

(3+1)d \mathbb{Z}_2 gauge-Higgs model

If time allows...

- S. A. and Y. Kuramashi, JHEP05(2022)102
- ✔ Efficiency of the TRG in the higher-dimensional LGT

\mathbb{Z}_2 gauge-Higgs model in the unitary gauge

✓ Action of the (d + 1)-dimensional \mathbb{Z}_2 gauge-Higgs model

 $S = -\beta \sum_n \sum_{\nu > \rho} U_\nu(n) U_\rho(n+\hat{\nu}) U_\nu(n+\hat{\rho}) U_\rho(n)$

 $-\eta \sum_{n} \sum_{\nu} \left[\mathrm{e}^{\mu \delta_{\nu,d+1}} \sigma(n) U_{\nu}(n) \sigma(n+\hat{\nu}) + \mathrm{e}^{-\mu \delta_{\nu,d+1}} \sigma(n) U_{\nu}(n-\hat{\nu}) \sigma(n-\hat{\nu}) \right]$

Choosing the unitary gauge, all the matter fields are eliminated

 $\sigma(n)U_{\nu}(n)\sigma(n+\hat{\nu})\mapsto U_{\nu}(n)$

 $S = -\beta \sum_{n} \sum_{\nu > \rho} U_{\nu}(n) U_{\rho}(n+\hat{\nu}) U_{\nu}(n+\hat{\rho}) U_{\rho}(n) - 2\eta \sum_{n} \sum_{\nu} \cosh\left(\mu \delta_{\nu,d+1}\right) U_{\nu}(n)$

Phase diagram of the (3+1)d \mathbb{Z}_2 -Higgs model

(3+1)D model at vanishing density

Current status of the phase diagram near the CEP

It seems that TRG and MC share a similar first-order line at $\mu=0$

A deviation about the location of the CEP