知の物理学研究センター定期セミナー(東大)

Compressing neural networks by tensor networks

Kenji Harada

Graduate School of Informatics, Kyoto Univ.

24 Nov. 2022

Al models are rapidly developing

- scale of models
- computational power

The number of parameters in AI models becomes a large scale

Large scale Al models

Jaime Sevilla, Pablo Villalobos (2021): Parameter counts in Machine Learning

Feed-forward neural network

Layer structure

 $\mathcal{F} = \mathcal{N}_n \mathcal{L}_n \cdots \mathcal{N}_2 \mathcal{L}_2 \mathcal{N}_1 \mathcal{L}_1$

Num. of parameters in a weight matrix $\ \#(W) \propto N^2$

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, "Tensorizing Neural Networks," NIPS (2016).

Non-linear layer : sigmoid, ReLU

Can we compress the weight matrix?

Matrix decomposition and compression

$$M = U\Lambda V^{\dagger} \approx U\tilde{\Lambda}V^{\dagger} = \left(U\sqrt{\tilde{\Lambda}}\right)\left(\sqrt{\tilde{\Lambda}}V^{\dagger}\right) = AB$$

Keep larger singular values

$$M_{ij} = \sum_{k=1}^{N} U_{ik} \Lambda_k \bar{V}_{jk} \approx \sum_{k=1}^{D} U_{ik} \Lambda_k \bar{V}_{jk} = \sum_{k=1}^{D} (U_{ik} \sqrt{\Lambda_k}) (\sqrt{\Lambda_k} \bar{V}_{jk}) = \sum_{k=1}^{D} A_{ik} B_{kj}$$

Diagram notation

Total number of parameters decreases $N^2 \rightarrow 2ND$ **Compression!**

Tensor decomposition and compression by MPS

Wave function defined by MPS

$$\begin{split} |\psi\rangle &= \sum_{i,j,k,l} \sum_{\alpha,\beta,\gamma} L^{i}_{\alpha} T^{j}_{\alpha\beta} T^{k}_{\beta\gamma} R^{l}_{\gamma} |ijkl\rangle \\ \langle\psi|\psi\rangle &= 1 \end{split}$$

Density ρ = Enta

$L \times MD^2$ From exponential to linear for L Compression!

Density matrix Reduced density matrix $\rho = |\psi\rangle \langle \psi|, \quad \rho_{(ij)} = \mathrm{Tr}_{(kl)}[\rho]$

Entanglement entropy

$$S = -\text{Tr}\left[\rho_{(ij)}\ln\rho_{(ij)}\right] \leq \ln D$$
$$A_{(ij),(kl)} = \langle (ij)(kl)|\psi\rangle = \left(U\Lambda V^{\dagger}\right)_{(ij),(kl)} \Rightarrow S = -\sum_{m=1}^{D} \lambda_{m}$$

Area law in tensor networks

Various tensor network states hold the area law of entanglement entropy

Entanglement in MPS

Entanglement entropy

MPS represents a class of quantum states in which entanglement is limited

Note. MPS = Tensor train (Oseledets, SIAM J. Sci. Comput. 2011)

Tensorization of a weight matrix

Weight matrix in a linear layer: y = Wx + b

Tensorization

Num. of input neurons $N_x = a_1 \times a_2 \times \cdots \times a_n$ Num. of output neurons $N_y = b_1 \times b_2 \times \cdots \times b_n$

 $W_{i}^{j} = W_{i_{1}\cdots i_{n}}^{j_{1}\cdots j_{n}}$

 $W = (W_i^j)$ Weight between input neuron *i* and output neuron *j*

$$i \to (i_1, \cdots, i_n)$$
 $j \to (j_1, \cdots, j_n)$
 $i = \sum_{l=1}^n a_l \cdot i_l$ $j = \sum_{l=1}^n b_l \cdot j_{l=1}$

Note. The num. of elements does not change

$$N = N_x \times N_y$$

MPO representation of a tensorized weight matrix

Matrix Product Operator (MPO)

Number of elements

 $N_x N_y = \prod (a_l b_l) \sim O(a^n b^n) \checkmark$

in an original weight matrix

Performance of a tensorized neural network

FC2 network for MNIST

Network structure : two fully connected layers

No.	Layer name	Input size	Output size	Comment	N _{para}	Represented
1	FC	28×28	256		200704	Yes
	ReLu					
2	FC	256	10		2560	Yes
	Softmax					

00000000 33 5 5 666666 999999999

MPO rep. of weight matrix

The first layer
$$W^{4,4,4,4}_{4,7,7,4}: \chi = D$$

The second layer $W^{1,1,10,1}_{4,4,4,4}: \chi = 4$

Ordering of neurons in an image

Compression ratio in other cases

		Original Rep	MPO-Net	
Data set	Network	Accuracy	Accuracy	Compression ratio
MNIST CIFAR-10	LeNet-5 VGG-16 VGG-19	99.17 ± 0.04 93.13 ± 0.39 93.36 ± 0.26	99.17 ± 0.02 93.76 ± 0.10 93.80 ± 0.02	$ \begin{array}{cccc} 8 & 0.05 \\ 6 & \sim 0.0005 \\ 9 & \sim 0.0005 \end{array} $

Z.-F. Gao, et al., "Compressing deep neural networks by matrix product operators," Phys. Rev. Research, vol.2, 023300 (2020).

The compression ratio of MPO-Net is small!

Features of tensorized neural networks

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, "Tensorizing Neural Networks," NIPS (2016). Z.-F. Gao, et al., "Compressing deep neural networks by matrix product operators," Phys. Rev. Research, vol.2, 023300 (2020).

- Compression of weight matrixes by MPO in a neural network
 - Low computational cost
 - Applicability to any NN: FC2, VGG, ResNet, DenseNet
 - High compression rate: MNIST, CIFAR-10, Fashion-MNIST

Why is the weight matrix effectively compressed?

Observation of effective components in weight matrix

Asoshina and Harada:	"Entanglement a
	JPS Autumn Me
Asoshina and Harada:	"Automatic rank
	JPS Autumn Me

MPO + FC

MPO	$4,4,4,4,4 \rightarrow 4,4,4,4,4, \chi =$			
	ReLU			
FC	$1024 \rightarrow 10$			
Softmax				

Dataset: MNIST (32x32)

Supported by TOYOTA-Kyoto Univ. joint project

analysis of neural networks with MPS," eeting 2021 (22pL4-9). optimization of MPO in tensorized neural networks," eeting 2022 (14pH112-1)

(in preparation)

Compression of neural networks

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, "Tensorizing Neural Networks," NIPS 2016.

Why is the weight matrix effectively compressed?

Summary and discussion

Z.-F. Gao, et al. Phys. Rev. Research, vol.2, 023300 (2020).

