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強相関多体系における新奇な状態の探索
• 新しい量子相・量子相転移 

• “形”の効果とランダムネス 

• 強い空間的異方性 
• 端・表面の効果 

   量子表面相転移 

• 有限サイズ効果 
   ナノ磁性体 

• 長距離相互作用の効果 
• 格子のゆらぎ 

  フォノンとスピンの相互作用 

• 空間・時間的非一様性 
   輸送現象、非平衡状態

実験

量子力学

統計力学

計算物理量子磁性体・
光学格子系 

ランダムネス

熱ゆらぎ

量子ゆらぎ モンテカルロ法 

テンソルネットワーク



Quantum phase transition in 2D HAF

• Quantum phase transition from spin-gapped state to AF-LRO phase

H =
∑

i,j

S2i,j · S2i+1,j + α
∑
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Impurity induced long-range order

• quantum fluctuations + impurities ⇒ long-range order! 

• static dimerization + static impurities 

• site or bond randomness 
• spontaneous dimerization? 
• quantum effects of phonons

site dilution bond dilution
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Supersolid in extended Bose-Hubbard model

• Interacting soft-core bosons 

• Supersolid = co-existence of 
  diagonal long-range order (=solid) and 
  off-diagonal long-range order (=superfluid)  

• Experimental realization: optical lattice

successive transitions of superfluid and solid for !t /U
=0.045,! /U=0.7". As was seen in the SSE simulation, here
we find again the suppression of the solid order by the su-
perfluid fraction. Namely, S" has a cusp at the superfluid
transition point. We also depict the phase diagram and com-
pare that to that of SSE !Fig. 8". They show a qualitatively
good agreement, e.g., there is the tetracritical point !tc ,Tc"
and the critical temperatures TS"

and T#s
are suppressed by

appearance of the other order as mentioned before.
Let us study the competition between the solid and super-

fluid orders by analyzing the Ginzburg Landau !GL" free
energy. Since the order parameters m and $ take small value
in the vicinity of the tetracritical point, the GL free energy is
expressed as

F = am2 + bm4 + c$2 + d$4 + hm2$2. !13"

When a becomes zero at TS"
#a$a0!T−TS"

"% with a positive
b, the second-order transition between the normal solid and
normal liquid phases takes place, and similarly when c be-
comes zero at T#s

#c$c0!T−T#s
"% with a positive d, the

second-order transition between the superfluid and normal
liquid phases takes place. The fifth term represents the com-

petition between the solid and the superfluid order. If h
equals zero, the transition of the solid phase and that of su-
perfluid take place independently at TS"

and T#s
, respectively.

If h is positive, the presence of the superfluid order lowers
the transition temperature of solid. Below the tc, the solid
order emerges first as temperature decreases. Then, the su-
perfluid order appears at the modified transition temperature
T#s
! which is smaller than the original one

T#s
! % T#s

−
a0h/2bc0

1 − a0h/2bc0
!TS"

− T#s
" % T#s

. !14"

In the same way, the solid order lowers the transition tem-
perature of superfluid. The decrease of the transition tem-
peratures becomes large when h becomes large and this
means the shrinkage of the supersolid region. Thus, h repre-
sents the competition between the solid and the superfluid
orders.

As a final part of this section, we discuss the effect of
on-site repulsion on the coexistence of solid and superfluid
orders. As has been mentioned, the SS phase does not exist
in the ground-state !-t phase diagram for the hardcore case
which corresponds to the limiting case of infinite U. There-
fore we expect that the supersolidity is suppressed when the
on site repulsion U becomes large. We depict the t-T phase
diagram for various values of U in Fig. 9 obtained by MF.
Here, we use zV as the unit of energy instead of U because
now we want to study the effect of U. In Fig. 9, we find that
the SS region becomes narrower as U increases. Finally, the
supersolid region disappears completely in the hardcore limit
U→&, where a first-order transition between solid and su-
perfluid phases takes place. Thus, we conclude that U, i.e.,
the hardness of the particle, suppresses the coexistence of the
two orders.

VI. DISCUSSION AND SUMMARY

We studied properties of supersolid state in three-
dimensional extended Bose-Hubbard model by using SSE
simulation and MF analysis. First we studied the ground-
state phase diagram. There we found the existence of super-
solid phase in the region of #%1 /2. We confirmed that this
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sity !"1 /2. Therefore we confirm the existence of the su-
persolid phase in the region of !"1 /2.

V. PHASE TRANSITIONS AT FINITE TEMPERATURES

Now, we study the ordered states at finite temperatures.
The phase transition between the normal liquid phase and the
solid phase is expected to belong to the universality class of
the Ising model because the phase transition occurs in the
spontaneous symmetry breaking of the order parameter with
the symmetry of Z2. On the other hand, the phase transition
of superfluid is expected to belong to the XY universality
class because the order parameter has the symmetry of U!1".
In this section, we study the temperature dependence of these
order parameters.

A. Stochastic series expansion

First, we show the results obtained by SSE. The simula-
tions were performed in the grand canonical ensemble using
a system sizes N=103 and N=123.

We plot the order parameters of solid, S#, and that of
superfluid, !s, as a function of temperature for various values
of t. In Fig. 5!a", we show the transition from normal liquid
to normal solid for t /U=0.02 in which only S# appears con-
tinuously. In the same way, the transition from normal liquid
to superfluid for t /U=0.08 is depicted in Fig. 5!b". For
t /U=0.045, the system shows successive transitions and the
supersolid state is realized at low temperatures. There, we
find that the solid order appears at a higher temperature #Fig.
5!c"$. Note that the solid order is suppressed when the super-
fluid order appears. Thus, we expected that the solid fraction
and the superfluid fraction compete with each other. It should
be noted that !s appears at higher temperature than the solid
order for t /U=0.055 !not shown".

In Fig. 6, we depict a phase diagram in the coordinate of
!t /U ,T /U" for the fixed values V /U=1 /z and $ /U=0.7. The
transition temperatures of the solid state TS#

are plotted by
solid circles and those of the superfluid state T!s

are plotted
by open circles. To determine the transition temperatures for
each value of t, we use the method of the Binder parameter27

of the systems with L=10 and 12. In Fig. 6, there are four
different phases: NL, NS, SF, and SS. These phases meet at a

tetracritical point !tc ,Tc". The competition of solid and super-
fluid orders is also found in the phase diagram !Fig. 6".
Namely, above tc, the transition temperature of solid is
smaller than that of smooth extension of TS#

from t" tc.
Therefore we conclude that TS#

is suppressed from that of
the case in which the superfluid would not order. Similarly,
below tc, the transition temperature of superfluid is smaller
than that of the case in which the solid would not order.

B. Mean-field analysis

Here, we calculate the temperature dependence of order
parameters by making use of MF. In Fig. 7, we show the
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FIG. 5. Temperature dependence of order parameters obtained
by SSE !V=U /z". !a" !t /U=0.02,$ /U=0.7": normal liquid-normal
solid transition. !b" !t /U=0.08,$ /U=0.7": normal liquid-superfluid
transition. !c" !t /U=0.045,$ /U=0.7": normal liquid-normal solid
transition and normal solid-supersolid transition.
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II. MODEL

We analyze the extended Bose-Hubbard Hamiltonian on a
cubic lattice

H = − t!
"ij#

$ai
†aj + aiaj

†% + V!
"ij#

ninj

+
1
2

U!
i

ni$ni − 1% − !!
i

ni, $1%

where ai
† and ai are the creation and annihilation operators of

a boson $&ai ,aj
†'="ij% and ni=ai

†ai. The parameter t denotes
the hopping matrix element, U and V are the on-site and
nearest-neighbor repulsions, respectively, and ! is the
chemical potential. The notation "ij# means the sum over the
nearest-neighbor pairs. The system size is N=L3, where L is
the length of the system. The order parameter of the solid
state is

S# =
1

N2!
jk

eiQ·$rj−rk%"njnk# , $2%

where Q= $# ,# ,#% is the wave vector that represents the
staggered order. As for the order parameter of the superfluid
state, we adopt Bose-Einstein condensation fraction

$k=0 =
1

N2!
jk

"aj
†ak + ak

†aj# $3%

in the mean-field analysis, while in the SSE simulation we
adopt the superfluidity $s for the convenience of numerical
calculation. The expression of $s is given in Sec. III. Al-
though these two quantities are not the same, both of them
describe the off-diagonal long-range order $ODLRO% and are
considered to represent the same qualitative nature of the
superfluidity.

III. METHODS

We use the following two different methods to analyze
properties of the system.

A. Stochastic series expansion

We perform numerical simulation of the SSE, which was
invented by Sandvik.15,16 This method is one of quantum
Monte Carlo $QMC% simulations and has been successfully
applied for various quantum systems. In order to avoid the
clusterization due to diagonal frustration, we adopt the gen-
eralized directed loop algorithm.17 We use a package of
the Algorithms and Libraries for Physics Simulations
$ALPS%.18,19 We adopt a simple-cubic lattice of N=L3 sites
with periodic boundary conditions along all the lattice axes.
In the simulation, instead of the condensation fraction $k=0
&Eq. $3%', we calculate superfluidity $s using the winding
number W of world lines20,21

$s =
"W2#
3t%L

, $4%

where % is the inverse temperature.

B. Mean-field approximation

We also analyze the ordering processes by the MF
approximation.22 In order to study the solid state, we use a
sublattice structure which is characterized by a staggered or-
der of the density. Here we adopt mean fields for the solid
order and superfluid order at sublattices A and B. The Hamil-
tonian for this MF is given by

HMF = HA + HB + C , $5%

HA = − zt$aA
† + aA%&B + zVnAmB +

U

2
nA$nA − 1% − !nA,

$6%

HB = − zt$aB
† + aB%&A + zVnBmA +

U

2
nB$nB − 1% − !nB,

$7%

C = 2zt&A&B − zVmAmB, $8%

where z$=6% is the number of nearest-neighbor sites. Here,
mA and mB are the mean fields corresponding to the expec-
tation values of the number operators for A and B sites, re-
spectively,

mA = "nA# and mB = "nB# . $9%

Similarly, &A and &B correspond to the expectation values of
the annihilation operators for A and B sites, respectively,

&A = "aA# and &B = "aB# . $10%

Here, the expectation values are taken over the ground state
in the case of T=0. In the finite temperature case, these rep-
resent the thermal averages.

HA $HB% is a mean-field Hamiltonian at a site of the A $B%
sublattice. C is a correction term compensating the double
counting of the energy.

In the finite temperature case, the partition function and
the free energy are given by

ZMF = Tr$e−%HMF% , $11%

FMF = −
1
%

ln ZMF. $12%

In MF, m($mA−mB% /2 denotes the order parameter of solid
and fulfill the relation S#=m2. Similarly, &($&A+&B% /2
represents the order parameter of superfluid and fulfill the
relation, $k=0=2&2, according to Eq. $3%.

IV. GROUND-STATE PROPERTIES

Before analyzing properties at finite temperatures, let us
summarize the ground-state properties. As has been reported,
the system may have the supersolid phase in the ground state
when U takes a finite value.14,23 In Fig. 1, we show the
ground-state phase diagram in the coordinate of $t /U ,! /U%
obtained by MF method. As for the supersolid state in the
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Deconfined critical phenomena

• Possibility of continuous phase transition between two symmetry broken 
phases ⇒ Novel critical phenomena due to quantum interference 

• SU(2) symmetric NCCP1 model (Kukulov et al 2008) 
  ⇒ weak 1st order? 

• SU(N) J-Q model (Lou et al 2009, Harada, 2013) 
  ⇒ confirmation of DCP scenario by Large-scale QMC

Senthil, et al (2004)
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計算物理の階層
• どうモデル化するか？ 

• 問題の定式化、何を見るか？ 何を測るか？ 

• シミュレーション手法 

• アルゴリズム、プログラム開発、実装 

• 最適化、並列化 

• より高性能なコンピュータ



量子多体系に対するシミュレーション手法
• ヒルベルト空間の次元 ～ 系のサイズに対して指数関数的に増加 

• 全ての状態を厳密に扱うことは、スパコンを使っても無理 

• 物理的に重要な性質を失うことなく、シミュレーションを実行
しやすい形へ表現しなおすことが本質的 

• 乱択アルゴリズム (randomized algorithm) 

• 虚時間経路積分+モンテカルロサンプリング = QMC 

• 情報圧縮 

• 特異値分解による波動関数の低ランク近似                         

= テンソルネットワーク 

• スパース(疎性)モデリング, LASSO

テンソルネットワークの代表例
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大学院における研究テーマの例
• 異方性の強い量子磁性体における相転移の研究 

• 鎖Bethe法の開発、動的異方性制御、不純物効果 

• 長距離相互作用をもつ磁性体の研究 
• オーダーNモンテカルロ法の開発、磁気双極子相互作用の効果 

• 格子の自由度と結合した量子磁性体の研究 
• 格子結合系に対するモンテカルロ法の開発、スピン-パイエルス転移 

• 新奇量子相の探求 
• 連続空間QMCの開発、表面吸着ヘリウム4の示す超固体状態 

• 量子多体系におけるトポロジカルな秩序・エンタングルメントの研究 
• 量子モンテカルロによるエンタングルメントエントロピーの測定 
• 秩序変数としての局所ベリー位相 

• 物質科学シミュレーションの基礎原理の研究 
• 詳細つりあいを必要としないモンテカルロ法、テンソルネットワーク



藤堂研で研究・開発しているアルゴリズム
とソフトウェア

• 古典/量子マルコフ連鎖モンテカルロ法 (looper, worms) 

• 詳細つりあいを必要としないモンテカルロ法 (BCLライブラリ) 

• 長距離相互作用系に対するO(N)法 

• Spin-Peierls 系(粒子数の保存しない系に系に対するワームアルゴリズム) 

• 連続空間量子モンテカルロ法(ワームアルゴリズム) 

• Stochastic Approximationとの組み合わせ 

• 厳密対角化法 

• Rokko: 大規模並列対角化ライブラリ 

• テンソルネットワーク法 

• ALPS: Applications and Libraries for Physics Simulations 

• 強相関量子格子模型のためのオープンソースソフトウェア 

• MateriApps: 物質科学シミュレーションのポータルサイト 

• MateriApps LIVE! オープンソースソフトウェアを収録したライブLinux

Metropolis heat bath BC



成し遂げたいこと

負符号問題の解決


