
13 Quantization of Dirac field

Canonical Quantization The Lagrangian for the Dirac field

L = ψ̄(iγµ∂µ −m)ψ = ψ†(i∂0)ψ + · · · (13.1)

implies that the canonical momentum for the Dirac field is,

ψα = ∂(L)/∂(ψ̇α) = iψ∗α (13.2)

The canonical (equal-time) anti-commutation relation reads,

{ψα(~x), πβ(~y)} = iδ(~x− ~y)δαβ →
{
ψα(~x), ψ∗β(~y)

}
= δ(~x− ~y)δαβ (13.3)

with {ψ, ψ} = {ψ∗, ψ∗} = 0.

Mode expansion Mode expansion is defined by the normalized solutions of Dirac equation

ur(~p), vr(~p) as,

ψ(x) = ψ(+)(x) + ψ(−)(x)

ψ(+)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

cr(~p)ur(~p)e
−ipx

ψ(−)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

d†r(~p)vr(~p)e
ipx (13.4)

ψ̄(x) = ψ̄(+)(x) + ψ̄(−)(x)

ψ̄(−)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

c†r(~p)ūr(~p)e
ipx

ψ̄(+)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

dr(~p)v̄r(~p)e
−ipx (13.5)

The canonical anti-commutation relation is equivalent to{
cr(~p), c

†
r(~q)

}
=
{
dr(~p), d

†
r(~q)

}
= δrsδ(~p− ~q) , (13.6)

and all the other anti-commutator vanishes. In order to prove the equivalence, we need relations,∑
r

ur(~p)αūr(~q)β = (γµpµ +m)αβ,
∑
r

vr(~p)αv̄vr(~q)β = (γµpµ −m)αβ, (13.7)

which we have proved previously.
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Energy, Momentum, Charge The conserved quantities for the fermion system is conveniently

expressed in terms of number operators,

Nr(~p) = c†r(~p)cr(~p), N̄r(~p) = d†r(~p)dr(~p) (13.8)

which counts the number of fermion and anti-fermions. The total energy, momentum and charge

of the system which are defined by Nöther method is give as,

E =

∫
d3xT 00 =

∫
d3xψ̄(iγ0∂0)ψ =

∫
d3p
∑
r

ω(~p)(Nr(~p) + N̄r(~p) + const) (13.9)

~P =

∫
d3xT 0i = −

∫
d3xψ̄(iγ0~∇)ψ =

∫
d3p
∑
r

~p (Nr(~p) + N̄r(~p)) (13.10)

Q = q

∫
d3xψ†ψ = q

∫
d3p
∑
r

(Nr(~p)− N̄r(~p)) (13.11)

It shows that the fermion (resp. anti-fermion) created by c†r(~p) (resp. d†r(~p)) has energy ω(~p),

momentum ~p and charge q (resp. −q).

The derivation of these formulae (from third to fourth term) is not so straightforward. We need

use formulae,

ūr(~p)γ
0us(~p) = 2ω(~p)δrs, v̄r(~p)γ

0vs(~p) = 2ω(~p)δrs, ūr(~p)γ
0vs(−~p) = 0 (13.12)

which are proved by inserting the explicit form of the wave functions u, v.

Covariant anti-commutator As in the scalar field, we divide the fermion field into creation and

annihilation part:

ψ(x) = ψ(+)(x) + ψ(−)(x)

ψ(+)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

cr(~p)ur(~p)e
−ipx

ψ(−)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

d†r(~p)vr(~p)e
ipx (13.13)

ψ̄(x) = ψ̄(+)(x) + ψ̄(−)(x)

ψ̄(−)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

c†r(~p)ūr(~p)e
ipx

ψ̄(+)(x) =

∫
d3x

1

(2π)3/2
√

2ω(~p)

∑
r

dr(~p)v̄r(~p)e
−ipx (13.14)

The covariant anti-commutator is written in the form:{
ψ(±)
α (x), ψ̄

(∓)
β (y)

}
= S±(x− y), S±(x) = (iγµ∂µ +m)i∆±(x){

ψα(x), ψ̄β(y)
}

= S(x− y), S(x) = (iγµ∂µ +m)i∆(x) (13.15)
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To prove them, we plug the mode expansion into the anti-commutator and use identities such as∑
r ur(~p)αur(~q)β = (γµpµ +m)αβ.

Eq.(13.15) shows that fermion fields satisfies the causality since ∆(x) = 0 for x2 < 0.

Feynman propagator We have to be careful in the sign when we define the time ordering for

fermions,

SF (x− y) = 〈0|T (ψα(x)ψ̄β(y))|0〉
= θ(x0 − y0)〈0|ψα(x)ψ̄β(y)|0〉 − θ(y0 − x0)〈0|ψ̄β(y)ψα(x)|0〉
= θ(x0 − y0)S(+)

αβ (x− y)− θ(y0 − x0)S(−)
αβ (y − x) = · · ·

= (iγµ∂µ +m)αβDF (x− y)

=

∫
d4x

(2π)4
e−ip(x−y)

i(γµpµ +m)αβ
p2 −m2 + iε

(13.16)

14 Quantization of Gauge (Maxwell) Field

Since gauge field Aµ has the gauge symmetry δAµ = ∂µε, Aµ has non-physical components. It causes

a problem in the canonical quantization.

We start from the Lagrangian density,

L = −1

4
FµνF

µν =
1

2
( ~E2 − ~B2) . (14.1)

The canonical momentum for Aµ:

π0 =
∂L

∂(∂0A0)
= 0 (!) (14.2)

πi =
∂L

∂(∂0Ai)
= F0i = Ei. (14.3)

While we would like to impose the canonical commutation relation

[Aµ(~x), πν(~y)] = −iηµνδ(~x− ~y) (14.4)

it does not make sense since (14.2).

There are two approaches to define the quantization for such system.

1. Quantization of constrained system: this is a method developed by Dirac to quantize the

constrained system (some canonical variables vanish)

2. Path integral: this is the most standard approach and will be explained in QFT2 course.
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In this course, we take a short cut to save time. The origin of the problem is the gauge symmetry.

This may be removed by using gauge fixing condition. Useful choices are,

∂µA
µ = 0 (Lorentz gauge) (14.5)

~∇ · ~A = 0 (Coulomb gauge) (14.6)

Here we pick the first one.

S = −1

4

∫
d4x (∂µAν − ∂νAµ)2

= −1

2

∫
d4x (∂µAν∂

µAν − ∂µAν∂νAµ)

= −1

2

∫
d4x (∂µAν∂

µAν − ∂νAν∂µAµ)

To obtain the third line from the second, we use the integration by parts for the second term.

Assuming that the gauge fixing condition may be used at the level of Lagrangian, the second term

in the third line vanishes. So one may use,

L′ = −1

2
∂µAν∂

µAν (14.7)

as the effective Lagrangian where the gauge symmetry is lost. The canonical momentum is obtained

as

π′µ =
∂L′

∂(∂0A0)
= −∂0Aµ , (14.8)

and the commutation relation is obtained as,

[Aµ(~x), πν(~y)] = −
[
Aµ(~x), Ȧν(~y)

]
= iηµνδ(~x− ~y) . (14.9)

These are the same as the commutation relations of scalar fields while the sign is flipped for A0.

As in scalar or Dirac fields, we may introduce the mode expansion,

Aµ(x) =

∫
d3p

(2π)3/2
√
ω(~p)

{
3∑
r=0

εµr (~p)
(
ar(~p)e

−ipx + a†r(~p)e
ipx
)}

(14.10)

Here εµr (~p) is the polarization vector. We use the following convention for them,

εµ0(~p) = (1, 0, 0, 0)t (time component) (14.11)

εµ3(~p) = (0,
~p

|~p|
)t (longitudinal component) (14.12)

εµr (~p) = (0,~εr)
t for r = 1, 2 (transverse components) (14.13)

~εr ∈ R3 are chosen such that ~εr · ~εs = δrs, ~εr · ~p = 0.
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It can be shown that the CCR for Aµ (14.9) is equivalent to the commutation relations for the

creation/annihilation operators, [
ar(~p), a

†
s(~q)

]
= −ηrsδ(~p− ~q) (14.14)

and all the other brackets vanish. The covariant commutation relation,

[Aµ(x), Aν(y)] = −iηµνδ(~p− ~q), i∆(x) =
1

(2π)3

∫
d4pδ(p2)ε(p0)e−ipx (14.15)

and the Feynman propagator,

Dµν
F (x− y) = 〈0|T (Aµ(x)Aν(y))|0〉 =

∫
d4p

(2π)4
−iηµν

p2 + iε
e−ip(x−y) (14.16)

are the same as those for scalar fields up to the sign.

The construction so far after the gauge fixing seems simple. It has, however, a serious problem –

the positivity of the Hilbert space. It is natural that the n-particle states are spanned by the basis,

a†r1(~p1) · · · a
†
rn(~pn)|0〉. (14.17)

We can easily see that the time-like components a†0(~p)|0〉 has the negative inner-product,

〈0|a0(~p)a†0(~q)|0〉 = −δ(~p− ~q).

It contradicts with the probability interpretation of the quantum mechanics.

The other problem is the positivity of the energy eigenvalue. The Hamiltonian of the system

can be derived from Noether’s theorem,

H =

∫
d3p

3∑
r=0

ζrω(~p)a†r(~p)ar(~p) + (const.), ζr := −ηrr . (14.18)

Suppose we neglect the infinite constant coming from normal ordering, the energy associated with

time-like photon created by a†0(~p) is negative.

Such problems are cured if we impose the gauge fixing condition (14.5) properly. We note first

that to use ∂µA
µ = 0 as the operator relation is impossible since their covariant commutator,

[∂µA
µ(x), Aν(y)] = −i∂ν∆(x− y) 6= 0, (14.19)

does not vanish. Therefore we impose such condition on the Hilbert space. We decompose the

constraint into the annhilation and creation parts,

∂µA
ν = (∂µA

µ)+ + (∂µA
µ)− (14.20)
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and use it as the restriction to the physical Hilbert space Hphys ⊂ H,

|phys〉 ∈ Hphys ↔ (∂µA
µ)+|phys〉 = 0 (14.21)

〈phys| ∈ H⊥phys ↔ (∂µA
µ)+|phys〉 = 0 (14.22)

We proceed to study what kind of states appear in Hphys. We observe,

pµε
µ
r (~p) =


|~p| r = 0 time mode

0 r = 1, 2 transverse mode

−|~p| r = 3 longitudinal mode

(14.23)

It implies,

(∂µA
µ)+|phys〉 = 0↔ (a0(~p)− a3(~p))|phys〉 = 0 (14.24)

In the one particle state, the transverse modes a†r(~p)|0〉 (r = 1, 2) is in the physical Hilbert space.

The time and longitudinal modes a†0|0〉, a
†
3|0〉 does not satisfy the condition and are not physical. A

combination of them, however,

(a†0(~p)− a
†
3(~p))|0〉 (14.25)

satisfies the physical state condition and therefore physical. This state, however, has zero-norm,

< 0|(a0(~p)− a3(~p))(a†0(~q)− a
†
3(~q))|0〉 = −δ(~p− ~q) + δ(~p− ~q) = 0. (14.26)

While the physical Hilbert space is generated by, (a) the creation operator of transverse mode:

a†1,2(~p) (b) a combination of time and longitudinal mode: a†−(~p) := a†0(~p)− a
†
3(~p) the latter does not

contribute to the observation since they have zero-norm.

To summarize the section, the description of the Maxwell field is given by the propagator (14.16)

and physical Hilbert space generated by transverse modes a†1,2(~p).

15 Interaction picture and perturbation theory

In quantum mechanics, we learned two pictures to describe the same system:

• Schrödinger picture: the state has time evolution,

i
∂ψS
∂t

= ĤψS . (15.1)

Time evolution of the state is described by a unitary operator:

ψS(t) = ÛS(t, t0)ψS(t0) (15.2)

ÛS(t, t0) = e−iĤ(t−t0) (15.3)

On the other hand, the operators (such as x̂, p̂) do not change in time: ∂tOS = 0.
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• Heisenberg picture: The operators evolve in time:

i∂tOH =
[
OH(t), Ĥ

]
(15.4)

It may be solved as,

OH(t)ÛS(t, t0)
†OS(t0)US(t, t0) . (15.5)

On the other hand the state is static, ψH(t) = ψS(t0).

These two pictures are equivalent,

S〈B, t|OS|A, t〉 = S〈B, t0|U †S(t, t0)OSUS(t, t0)|A, t0〉 = H〈B|OH(t)|A〉H . (15.6)

Interaction picture In the perturbation theory, the Hamiltonian may be decomposed into two

parts:

H = H0 +HI (15.7)

where H0 and HI describes the free motion and the interaction (perturbation) respectively. Through

such decomposition, one may introduce the third picture which will be particularly useful in quan-

tum field theory which is refered to as the interaction picture. In this case,

1. Operators : time evolution by free Hamiltonian H0

2. States : time evolution by interaction HI

More precisely the Hamiltonian equation is written as,

i∂tOI(t) = [OI(t), H0] , (15.8)

i∂tψI(t) = HI(t)ψI(t), (15.9)

where the interaction part HI(t) should be evolved in time by H0;

HI(t) = eiH0(t−t0)HI(t0)e
−iH0(t−t0) (15.10)

The time dependence of the state in the interaction picture can be solved as,

ψI(t) = UI(t)ψI(t), UI(t) = eiH0(t−t0)e−iH(t−t0) , (15.11)

which may be proved as,

∂tψI = eiH0(t−t0)(iH0 − iH)e−iH(t−t0)ψH

= eiH0(t−t0)(−iHI)e
−iH(t−t0)ψH

= eiH0(t−t0)(−iHI)e
−iH0(t−t0)eiH0(t−t0)e−iH(t−t0)ψH

= −iHI(t)ψI(t) (15.12)
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The interaction picture fits with the quantum field theory in the following reason. Firstly, the

mode expansion of the fields include the time dependence according to the free Hamiltonian motion.

They takes the relativistic invariant form as we have seen. While the interaction Hamiltonian HI(t)

looks complicated, what we need to do is to replace the quantum field included in the interaction

by the time dependent one (namely the mode expansion itself). Thus the complicated part seems

to be in the description of the time evolution of the states. It turns out that they are simple as we

see in the following.

Dyson expansion of S-matrix The time evolution from t = −∞ to t = ∞ in the interaction

picture gives the S-matrix:

ψI(t =∞) = SψI(t = −∞) (15.13)

namely, S = UI(∞,−∞). The time dependence of UI(t, t0) is described by the differential equation

with the initial value,

i∂tUI(t, t0) = HI(t)UI(t, t0) (15.14)

UI(t0, t0) = 1 . (15.15)

It can be solved by dividing the time interval into the infinitesimal pieeces, ∆t = t−t0
N

(N >> 1),

t` := t0 + `∆t. For such infinitesimal time evolution, one may use the approximation,

UI(t`+1, t`) ≈ 1− i∆tHI(ti) . (15.16)

The time evolution operator may be evaluated as,

UI(t, t0) = lim
N→∞

(1− i∆tHI(tN−1))(1− i∆tHI(tN−2)) · · · (1− i∆tHI(t0))

= 1− i
N−1∑
i=0

HI(ti)∆t+ (−i)2
∑
i>j

HI(ti)HI(tj)(∆t)
2 + · · ·

=
∞∑
n=0

(−i)n

n!

∫
· · ·
∫ t

t0

dnt T (HI(tn) · · ·HI(t1)) (15.17)

In the last line, we convert the summation into integral. We note that the time ordering shows up

naturally. Taking the limit t→∞, t0 → −∞, we obtain an expression for S matrix,

S =
∞∑
n=0

(−i)n

n!

∫
· · ·
∫ ∞
−∞

dnt T (HI(tn) · · ·HI(t1)) (15.18)

This expression for the S matrix is called Dyson expansion. We note that we need some modifications

to define the S matrix which may be explained a bit later...
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Application to QFT As explained, in the interaction picture, we replace operator by quantum

fields including time and HI by the interaction Lagrangian, HI → −
∫
d3xLI . For example, the

QED Lagrangian is written as,

L = −1

4
FµνF

µν + ψ̄(iγµDµ −m)ψ, Dµ = ∂µ − iqAµ , (15.19)

the interaction Hamiltonian is HI = −q
∫
d3xψ̄γµAµψ.

The Dyson expansion for the QFT is written as,

S =
∞∑
n=0

(i)n

n!

∫
(R4)n

d4x1 · · · d4xn T (LI(xn) · · · LI(x1)) (15.20)

Scattering amplitude We use the S-matrix and the external states to give the scattering ampli-

tudes. Schematically the scattering of two particles with momentum ~k1, ~k2 into ` particles ~p1, · · · ~p`
may be written as,

t=∞〈~p1, · · · , ~p`|~k1, ~k2〉t=−∞ = 〈~p1, · · · , ~p`|S|~k1, ~k2〉 (15.21)

We normalize the external states (which appear in bra and ket) as,

• scalar field:

|~p〉 = (2π)3/2
√

2ω(~p)a†(~p)|0〉 (15.22)

〈~p| = (2π)3/2
√

2ω(~p)a†(~p)〈0| (15.23)

• fermion:(± means particle/anti-particle)

|~p, r〉+ = (2π)3/2
√

2ω(~p)c†r(~p)|0〉 (15.24)

|~p, r〉− = (2π)3/2
√

2ω(~p)d†r(~p)|0〉 (15.25)

• photon: (r = (1, 2) means the polarization, two transverse modes)

|~p, r〉 = (2π)3/2
√

2ω(~p)a†r(~p)|0〉 (15.26)

These normalizations come from the relativistic invariant measure for the momentum:∫
d3p

(2π)3/2
1

2ω(~p)
=

∫
d4p

(2π)3
δ(p2 −m2)θ(p0) (15.27)

It simplifies the wave functions associated with the external fields:

• scalar field:

〈0|φ(x)|~p〉 =

∫
d3q

(2π)3/2
√

2ω(~p)
(2π)3/2

√
2ω(~p)a†(~p)|0〉 = e−ipx (15.28)

9



• Dirac field:

〈0|ψ(x)|~p, r〉+ = ur(~p)e
−ipx (15.29)

〈0|ψ̄(x)|~p, r〉− = v̄r(~p)e
−ipx (15.30)

• photon:

〈0|Aµ(x)|~p, r〉 = εµr (~p)e−ipx (15.31)
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16 Feynman rule

We have seen so far that the scattering amplitude is written in the form 〈~p1, · · · , ~p`|S|~k1, ~k2〉 where

S has the Dyson expansion (15.20) and the state |~k1, ~k2〉 ∼ a†(k1)a
†(k2)|0〉 up to the normalization

factor.

This is in principle doable already since LI and the state are described by free oscillators. Here

we make it more explicit. What we need to do is following,

(i) We change the order of operators in T (LI(xn) · · · LI(x1)), namely move the creation (annihi-

lation) operator to the left (right) by using the commutation relations. Such manipulation is

called “normal ordering”.

(ii) operate the annhilation (creation) operators to the ket (bra) state. The operators which have

exactly the same number of of annihilation (creation) operators as the number of particles in

the initial (final) state can have nonvanishing inner product.

Normal ordering The change of ordering (creation to left, annhilation to right) is called normal

ordering. We illustrate it by the product of two operators,

A = A+ + A−, B = B+ +B− (16.1)

(operator with + (−) index is annihilation (creation) part). We write N(AB) for the normal ordered

product for AB. It is written explicitly as,

N(AB) = A+B+ + A−B+ + (−1)|A||B|B−A+ + A−B− . (16.2)

It is different from the product by the commutator [A+B−] which can expressed as the vacuum

expectation value,

AB = N(AB) + 〈0|AB|0〉. (16.3)

T-product, normal ordering and Feynman propagator By combining the T-product,

T (A(x)B(y)) = θ(x0 − y0)A(x)B(y) + (−1)|A||B|θ(y0 − x0)B(y)A(x), (16.4)

with the normal product, the previous result (16.3) is replaced by,

T (A(x)B(y)) = N(A(x)B(y)) + 〈0|T (A(x)B(y))|0〉. (16.5)

The last term on the right hand side is the Feynman propagator. For the scalar case, for example,

〈0|T (φ(x)φ(y))|0〉 = DF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip(x−y) (16.6)
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Propagator for the other fields are,

fermion
i(γµpµ +m)

p2 −m2 + iε
photon

−iηµν

p2 + iε
(16.7)

In the following we use the notation

A(x)B(y) := 〈0|T (A(x)B(y))|0〉 (16.8)

The connected operators are replaced by the propagator. It is referred to as the contraction.

Wick’s theorem One may generalize (16.5) for the product of time-ordered n operators:

T (A1 · · ·An) = N(A1 · · ·An)

+
∑
i<j

N(A1 · · ·Ai· · ·Aj · · ·An)

+
∑

i<j<k<l

(
N(A1 · · ·Ai· · ·Aj · · ·Ak· · ·Al · · ·An) + ((ik)(jl) + (il)(jk))

)
+ · · · . (16.9)

On the right hand side, we take contractions for all possible pairs in the product and replace them

by propagators. This formula is referred to as Wick’s theorem.

To prove it, we use the induction. For n = 2, we have already proved it in (16.5).

Feynman diagram for scalar field As the simplest example of the interacting theory, we

consider the φ4 interaction for scalar field,

L = L0 + LI , L =
1

2

(
(∂µφ)2 −m2φ2

)
, LI = − λ

4!
φ4 . (16.10)

n-th order term in Dyson expansion of the scattering amplitude consists of

〈~p1, · · · , ~p|
in

n!

∫
d4x1 · · · d4xnT (LI(x1) · · · LI(xn))|~k1~k2〉.

We apply Wick’s theorem to T (LI(x1) · · · LI(xn)). Each contraction is replaced by propagator. The

remaining (uncontracted) fields remains in the inner product. We need to have two annihilation

operators and ` creation operators to make such inner product nonvanishing. Such procedure is

carried out by using a graphic rule,

1. internal line (contraction of two φs in LI). It is replaced by the propagator DF (x1 − x2).

2. external line: evaluation of inner product such as

〈~p1, · · · , ~p`|φ− · · ·φ−︸ ︷︷ ︸
`

φ+φ+|~k1~k2〉
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which is evaluated as products of factors of the wave functions,

〈0|φ(x)|~k〉 = e−ikx, 〈~p|φ(x)|0〉 = eipx (16.11)

Such contraction with bra and ket states is called as “internal line”.

3. vertex: Each term in L has an integration of the form,

−iλ
∫
d4x, (16.12)

which should be performed after the contractions (internal and external lines). The factor 1
4!

in the interaction Lagrangian will be (mostly) cancelled by the combinatorics factor (which φ

should be contracted with other φ).

4. Symmetry factor 1/|G|: when the diagram has symmetry (say finite group G), we need divide

the factor by the order of the goup |G|.

This is called as the Feynman rule in the coordinate space.

It is, however, simpler to use the expression for the propagator,

DF (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip(x−y).

The x dependence of the diagram comes from the propagator and the wave function. It is given in

the form e−i(p1+···+p4)x for each vertex. It is integrated for each vertex and it gives δ(4)(p1 + · · ·+p4).

Since the x integrations are replaced by the momentum integration, the Feynman rule is rewritten

as

1. internal line: we assign the factor i
p2−m2+iε

2. external line: we assign 1. (eipx factor is integrated.)

3. vertex: −iλδ(p1 + · · ·+ p4).

4. symmetry factor: 1/|G|.

5. integration over the momentum assigned to internal line.

The number of the integration of momentum was originally I (number of internal lines). It is reduced

by V . One delta function can not be cancelled since it gives the overall momentum integration,

δ(
∑

i∈OUT pi −
∑

i∈IN pi). The number of effective momentum integration is I − V + 1 = L where

L is the number of loops in the diagram. Usually the delta function factor for the vertex is not

written in the textbook because such integration is assumed.
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Feynman rule for QED The Feynman rule for QED can be derived in a parallel fashion. The

system consists of Dirac fermion with photon. The interaction is qψ̄γµAµψ. We go to the momentum

representation directly.

1. internal line:

fermion:
i(pµγ

µ +m)

p2 −m2 + iε
, photon:

−iηµν
p2 + iε

(16.13)

2. external line:

ingoing : fermion: ur(~p), anti-fermion: v̄r(~p), photon: εµr (~p) (16.14)

outgoing : fermion: ūr(~p), anti-fermion: vr(~p), photon: εµ∗r (~p) (16.15)

3. vertex: iqγµ

4. Symmetry factor: 1/|G|

5. momentum integration over loops

14


