PROBLEMS Astrophysics II (Satoshi Yamamoto)

Important Notes

- 1. Solve the following three problems. Prepare your report using A4 sheets, and put your name, course, and student ID on the top page.
- 2. Submit your report to the administration office (Kyomu) of the physics department.
- 3. The deadline is 17:00 (JST) on July 31, 2018 (Tue).
- 4. Submission by e-mail or fax is NOT accepted.

Problem 1: Estimate a typical ionization degree each for a diffuse cloud and a molecular cloud with a brief justification. Here, we assume that the H₂ density of a diffuse cloud is 100 cm⁻³ and that of a molecular cloud is 10^4 cm⁻³. Here, the hydrogen is assumed to be in a molecular form. Furthermore, the cosmic ionization rate of H₂ of 1×10^{-17} s⁻¹, the rate coefficient of electron recombination reactions of 1×10^{-7} cm³s⁻¹, and the elemental abundance of carbon relative to H₂ of 10^{-4} should be used.

<u>Problem 2</u>: In general, the time scale for the chemical equilibrium is give as:

$$\frac{1}{\tau} = \frac{1}{t_f} + \frac{1}{t_d},$$

where t_f and t_d represents formation and destruction timescales of molecules,

respectively. Estimate the time scale for the chemical equilibrium for a diffuse cloud, and compare it with the free fall time of a cloud with the H₂ density of 100 cm⁻³. Assume that the photodissociation rate is typically 10^{-10} s⁻¹.

<u>Problem 3</u>: In a molecular cloud, deuterium mainly exists in the form of HD, and its abundance relative to H_2 is 10⁻⁵. It is well known that the D/H ratio of molecules other than H_2 tends to be much higher than 10^{-5} . This phenomenon is called as 'deuterium fractionation'. It is triggered by the following reaction:

 $H_{3^{+}} + HD \rightarrow H_{2}D^{+} + H_{2}$

This is exothermic by 230 K, and hence, the backward reaction can be ignored at the low-temperature condition (10 K) of a molecular cloud, as far as para H₂ is considered. For this reason, deuterium is fractionated in the H₃⁺ ion. The H₂D⁺ thus formed is broken up by the ion-molecule reaction with CO and the electron recombination reaction. Considering these reactions, set up the rate equation for H₂D⁺, and evaluate the ratio of $[H_2D^+]/[H_3^+]$ under the steady-state approximation for the two cases of the CO abundances relative to H₂: 10⁻⁴ (no depletion of CO onto dust grains) and 0 (complete depletion). Here, assume the H₂ density and the temperature to be 10⁴ cm⁻³ and 10 K, respectively. Use the ionization degree obtained in Problem 1 for this problem. Also assume the rate coefficients of the electron recombination reaction and the ion-molecule reaction to be 1×10^{-7} cm³s⁻¹ and 1×10^{-9} cm³s⁻¹, respectively.