Deep Learning Application for Reconstruction of the Large-Scale Structure of the Universe

Kana Moriwaki (UTokyo UTAP/RESCEU)

ipi seminar 2022/10/19

Evolution of the Universe and the Large-Scale Structure of the Universe

Evolution of the Universe and the Large-Scale Structure of the Universe

Large-scale structure at present universe

Evolution of the Universe and the Large-Scale Structure of the Universe

- The large-scale structure tells us about:
 - Contents of the universe including dark matter and dark energy
 - Initial condition of the universe
 - etc.

30% matter 70% dark energy

about: ng dark matter and dark energy

100% matter

Huterer et al. 2013

Largest-volume data will be available soon!

All-sky surveys will be conducted.

Spectroscopic Observations to Measure the Large-scale Distributions

Emission Line: a Key to Measure 3D Distributions

The observed wavelengths of emission lines are a measure of the distance.

A Serious Problem: Contaminations and Noises

╋

Hydrogen line signals from near galaxies

+

Oxygen line signals from distant galaxies

$\begin{array}{l} Observed \ data \\ at \ wavelength \ \lambda_{obs} \end{array}$

Train a Deep Learning Model with Mock Observational Data

DM simulatino code + emission line model

Generate ~30,000 realistic mock observational maps using fast

Emission line model (mass-to-luminosity relation)

Mock data

× 2 × 30,000 + noise maps

e.g., pix2pix (Isola et al. 2016)

Machine Learns the Large-scale Structure...

observed

CNN

true (Ha)

reconstructed (Ha)

true (OIII)

+

reconstructed (OIII)

https://youtu.be/J3c5Xk-5kT0

Conditional Generative Adversarial Network

GAN: Generator and Discriminator are updated in an adversarial way.

observed (Ha+OIII)

X_{obs}: observed map

Loss function: $L[G, D] = \log D(X_{obs}, X_{true}) + \log[1 - D(X_{obs}, G(X_{obs}))] + \lambda \langle |X_{true} - G(X_{obs})| \rangle$

What if we do not use GAN?

The network tends to reproduce obscured images

Observed (Line1+Line2)

Reconstruct (Line2)

True (Line2)

Reconstruction of 3D Maps

Pre-processing Input Data with Physical information

The contribution from the galaxy appears in two wavelengths

Pre-processing Input Data with Physical information

Pre-processing Input Data with Physical information

KM & Yoshida 2021

Reconstruction Result

Reproducibility of bright peaks Peak detectability of Hα and [OIII] precision = 82%, 68%recall = 80%, 77%

What Does the Machine Learns to Separate the Signals?

Let's have a look at the convolutional filters.

Input (observed)

Convolutional filters

1st layer outputs

Filters in 2D Separation Models

Structures at different distances have different features (e.g., scale length, bias). → The machine might distinguish signals from different distances by learning them.

Can we trust the reconstructed maps?

- How precise is the reconstructed map? Is there a generation error? Is the model dependent on the assumption in the training model?

observational data.

 \rightarrow Evaluation of the generation error and the effects of the assumed model is important to extract cosmological information from future

Detectability of $> 3\sigma$ peaks

- Precision (N_{correct}/N_{rec}) of a machine: 76%
- Precision when we *combine* five networks (bugging): **91%**

How Precise Is the Reconstructed Map?

outputs of 5 networks

true distributions

Does the Reconstruction Depend on the Assumed Model?

Emission line model:

Mock data

What if the assumed line emission model in training data is wrong?

Test with Different Line Emission Models

Model 1 (x2 brighter intensity model)

KM+ 2021

Reconstructed

Statistics as well as bright pixel positions are reproduced properly irrespective to the assumed models in test data

What about noise model? More different models? → Future study

Reconstructed

- A generative adversarial network can be used to reconstruct the large-scale distributions of the universe from noisy observational maps.
- We can get good reproducibility by pre-processing the input data based on physical information.
- The machine learns the typical features in the large-scale structure as well as the synchronizing signals in two input data.
- Generation errors and the uncertainties in assumed models should be carefully evaluated in future actual use – combining multiple machines would be an important strategy.

