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Motivation of the field theory on a lattice

¢/ The field theory (FT) is a fundamental tool to describe the high-energy physics

— We usually consider (would like to solve) the path integral of a theory

¢/ Once we consider the FT on a lattice, we can regard the path integral just as a

multiple integral
[ =[] aoc0-

Numerical approaches give us chances to understand non-perturbative physics
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Standard numerical approach for FT on a lattice

v Monte Carlo (MC) simulation (Stochastic numerical approach)
— based on the probabilistic interpretation of the given Boltzmann weight
— faces a serious difficulty when P ~ e~S1?] takes negative or complex value

- Sign problem (there are regimes where the MC does not work)

* Fermions (the Grassmann numbers) must be integrated out in advance
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Research Motivation
v There are many systems suffering from the sign problem
QCD at finite density / real-time evolution / SUSY / ...
¢ Many unrevealed aspects must be remained

— Thermodynamic limit (or zero-temperature limit) is almost inaccessible
w/ the standard MC approach

v We need a numerical methodology which can give us an insight
for these aspects

We would like to consider the TRG approach from these perspectives
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Advantages of the TRG approach

v/ Tensor renormalization group (TRG) is a deterministic numerical method
based on the idea of the real-space renormalization group

* No sign problem

- The computational cost scales logarithmically w. r. t. the system size
* Direct evaluation of the Grassmann integrals

* Direct evaluation of the path integral

v/ Applicability to the higher-dimensional systems

TRG is a kind of tensor-network method and the application of the TRG to
the higher-dimensional systems has recently made remarkable progress

Lagrangian (TRG) approach: Meurice+, arXiv:2010.06539, SA+, arXiv:2111:04240
Hamiltonian (TNS) approach: Bafuls-Cichy, Rep. Prog. Phys. 83(2020)024401
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Cf. Tensor network & Machine Learning

Ex) Supervised image classification of the MNIST handwritten digits

Stoudenmire-Schwab, Advances in Neural Information Processing Systems 29(2016)4799

Martyn+, arXiv:2007.06082[quant-ph]

Matrix Product State (MPS)
Tensor Network State (TNS)

e Y

Tensor Network Machine Learning

N S

Back propagation method
Liao+, PRX9(2019)031041

Ex) A new way to accurately compute higher-order derivatives of the free energy



Introduction to the TRG approach
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Tensor renormalization group approach

Procedure of the TRG

1) Write down the target function X defined on lattice as a tensor contraction
(tensor network)

ex. Partition function, Path integral, ...

2) Approximately perform the tensor contraction with a TRG

1) TN representation for X : (# of tensors in TN) = (# of lattice sites)

X - Zabcd---Taiw---Tbjx---Tcky---lez---"'

2) TRG : Block-spin trans. for T to reduce # of tensors in TN

~ Za’blcld,"'T’a, T b/ T, / ""T’d,l,Z,
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TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Z = Z{g=i1}nn,ueXp[,B]0'n0'n+ﬁ] ::> Z = Tr[HnTan’nxrlly;z]

Ty v, x,y specifies the details of the model

exp[8)0u0s] —Z (Ut [1,0(0nn1,) = ZW(an LOW (03 1n)
W (a,b) = /1,U(a,b)

Txnynx{lyn = Z W oy, Xxn )W (0n, Yn)W(O-n X)W (0, Yn)

=1 Xn = Xn_% Yn = Yn— -y
Real Space R TN rep. for Z
n+79y 4 &
< o
X, X
MM VALY S 0" o " @
n—»x n n—+x T
. < R Yn
y y
n—y 4? ? r
X

=
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Basic concept of TRG algorithm

Idea of real-space renormalization group
lterate a simple transformation w/ approximation
and we can investigate thermodynamic properties

We cannot perform the contractions

in TN rep. exactly ( too many d. o. f.)

_|_

Information compression
w/ the Singular Value Decomposition (SVD)

....... P ® ® Q- Ajj = LU op Vi = Z£=1Uik0-kvjk

[ P @O @——Q
( A: mXn matrix, U: mXm unitary, V:nXn unitary )
X

2

TRG employs the SVD to reduce d. o. f. :
and perform the tensor contraction approximately
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Higher-order TRG (= TRG w/ isometry insertion)

v/ Applicable to any d-dimensional lattice

(A)

‘ <
=D

Iteration

(B)
\Sod)

HOSVD
—_

DADADC
DD

Contraction

Sequential coarse-graining
along with each direction

# of tensors are reduced to half

Xie et al, PRB86(2012)045139

m m
mZ
U Ut
m m
Q
D

D: bond dimension
Maximal size of tensors in the TRG
algorithm is characterized by D
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Anisotropic TRG ( = TRG w/ indirect SVD )

Adachi-Okubo-Todo, PRB102(2020)054432
v Applicable to any d-dimensional lattice

v/ Accuracy with the fixed computational time is improved compared with
the HOTRG, which is a conventional algorithm to the higher-dimensional systems

4 )

‘lf’ —O

X
~ D
Txyx’y’ ~ i=1Axyin’y’i

(A)

Q

Iteration Contraction

ATRG considers the block-spin transformation within
lower-rank tensors ( Memory: 0(D?4) - 0(D%*1)) # of tensors are reduced to half

o




Relative error of free energy
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Benchmarking w/ 2d Ising model (1/2)

Comparison of three types of TRG )
P yp HOTRG calculation
w/ D = 24
107F ‘ ‘ ‘ | ] | ‘
-8 Levin-Nave TRG | ] 05~ |© D=2 P
AH-A ATRG : o D=4
G- HOTRG x D=10
23
§ -1.0F
a8
=
5
E -15 —
2.0 —
10—9 | | | | | | | | ! | | | | | |
2.1 22 23 24 25 1.0 20 30 4.0 50

Temperature Temperature

HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same D
The exact solution is well reproduced



Relative error of free energy
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Benchmarking w/ 2d Ising model (2/2)

Relative error vs execution time ATRG calculation
-4
O ) L L ‘
- A-A ATRG .
_5' 05+
10°F
: 2
10-6§_ E-I.O
o 8}
107F g.s

B = B¢ 20

7 Il Il ‘ Il Il
| ! Lol ! Lol ! Lo 1.0 20 30 40 50

10 10 10° 10 10 Temperature
Execution time [sec]

ATRG shows better performance than the HOTRG at the same execution time

2d ATRG 2d HOTRG LN-TRG
Memory 0(D?) 0(D%) 0(D%)
Time 0(D>) 0(D7) 0(D®)
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Example: 3d Ising model w/ HOTRG

Xie et al, PRB86(2012)045139

—_
o

Internal Energy U
o

: ' : ' oy .
2 T oo Critical point
-_ o-©0© o= i
///«(‘M Method T.
i | [HOTRG (D = 16, from U) 451 1544]
HOTRG (D = 16, from M) 4.511546
Monte Carlo”’ 4511523
Monte Carlo™ 4.511525
Monte Carlo™ 4.511516
Monte Carlo™ 4511528
Series expansion™ 4511536
- - CTMRG'" 4.5788
o HOTRG TPVA" 45704
Fitting curve (¢=0.1023, T>T) CTMRG' 4.5393
o . TPVA'® 4.554
Flttlng curve (OLZO. 1 137, T< TC) Algebraic variation*' 4.547
1 . 1 . .
4.5 5.0 5.5 Good agreement with

Temperature the Monte Carlo results
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Current status of TRG in the higher-dimensional systems

Algorithm Cost Applications to 3d Applications to 4d
Ising Xie+, Ol
HOTRG Potts model wang+, sing mode| A
Xie et al, D**1InL free Wilson fermion sakai+, Staggered fermion
PRB86(2012)045139 7., gauge theory w/strongly coupled U(N)

Milde+
Dittirich+, Kuramashi-Yoshimura

Ising model Adachi+,
g o OComplex ¢* theory sa+,

Anisotropic TRG SU(2) gauge Kuwahara-Tsuchiya, ONJL model sa+
(ATRG) p2d+iin] OReal ¢p* theory sa+, 5 2 ’
Real ¢~ theory sa
Adachi-Okubo-Todo, OHubbard model sa-kuramashi ¢ L

OZ., sauge-Higgs

SA-Kuramashi

PRB102(2020)054432

O7., sauge-Higgs

SA-Kuramashi

Ising model Kadoh-Nakayama,

Kad-cl)-zl—?\l(:kz{y?ma D4*31nL O(2) model Bloch+, _
ArXiv:1912.02414 Z5 (extended) clock model Bloch+

Potts models Raghav G. Jha

D: bond dimension, L: linear system size, d: spacetime dimension



Application to (3+1)d QFTs on a lattice

(3+1)d complex ¢* theory at finite density

S. A, D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
v Efficiency of the TRG in the scalar theory w/ the sign problem

v/ Discretization (Regularization) of the continuous bosonic dof

(3+1)d Nambu—Jona-Lasinio model at finite density

S. A, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121

v Efficiency of the TRG in the fermion theory w/ the sign problem

v We can directly manipulate the Grassmann integral w/ the TRG

(3+1)d Z, gauge-Higgs model If time allows...
S. A. and Y. Kuramashi, JHEP05(2022)102

v Efficiency of the TRG in the higher-dimensional LGT



Application to (3+1)d QFTs on a lattice

(3+1)d complex ¢* theory at finite density

S. A, D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP09(2020)177
v Efficiency of the TRG in the scalar theory w/ the sign problem

v/ Discretization (Regularization) of the continuous bosonic dof



Complex ¢* theory at finite density

v a typical system with the sign problem
v the Silver Blaze phenomenon

— thermodynamic observables at zero temperature are independent of u up to u,

v a testbed for the methods intended to overcome the sign problem

* Complex Langevin method
Aarts, PRL102(2009)131601

* Thimble approach

Cristoforetti et al, PRD88(2013)051501
Fujii et al, JHEP10(2013)147

* World-line representation
Gattringer-Kloiber, NPB869(2013)56-73

15/29
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Discretization of the bosonic dof

v Typical system w/ the sign problem at finite chemical potential u

S = Znea, [—Z8, (eFOvdgy iy + e7HOVAP 1) + (2d + mP) [Pyl + A dpl*]

v Employing the Gauss quadrature rule, we regularize (discretize) ¢,, € C to obtain TN rep.

Polar-coordinate description: ¢,, = r,,e'™*n

Continuous Discrete Quadrature rule
d. o. f. d. o.f.
1, € [0,00] — a, €EZ Gauss-Laguerre : fooo dr, e " f(r,) = Z§n=o We, f (Ta,)

s, € [-1,1] —— B, EZ Gauss-Legendre: f_ll ds,f(sp) = Z§n=0 ug, f(sg,)
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Algorithmic-parameters dependence
withm=0.1,A=1,u=0.6L=1024

Polynomial order

: Bond dimension in the ATRG
in the Gauss quadrature

-0.88 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T —0.90 T T T
-0.89 _
0941~
> >
N -0.90 - 4 N
= £-096|
091 | 0.98- K = 64 .
L o 4 B i
I | 1.00 -
_0 92 Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il ‘ Il Il Il Il L 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il
“0 10 20 30 40 50 60 70 5 10 15 20 25 30 35 40 45
K D

little K dependence beyond K ~ 30 converging around D ~ 40
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Silver Blaze Phenomenon at finite density

Average phase factor Number density
S S R 0.8 ——

1.0

x—x [ =4

c—o [ =8 B
L=16 —

o [ =32 | 0.6
L=64

<+ L=128 g
L =256 —
L=512 g 04+

** [ =1024 | -

<n>

0 00 02 04 06 08 10

Resulting (n) is qualitatively not bad even in the region with (eie)pq ~ 0.

(n) stays around O up to u = 0.65 and shows the rapid increase with u = 0.65.

— This is a typical feature of the Silver Blaze phenomenon
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(|p|#): a discussion of the validity of numerical results
withm =0.1,1=1,K =64,D = 45

(Ip|?) ~ 0.125 over 0 < u < 0.6

Mean-field estimation

4sinh? 25 = m2 4 42(|¢|2)
2 n=0
Aarts, JHEP05(2009)052

N
pF ~ 0.70

Location of u. in the current ATRG calculations seems reasonable



Application to (3+1)d QFTs on a lattice

(3+1)d Nambu—Jona-Lasinio model at finite density

S. A, Y. Kuramashi, T. Yamashita and Y. Yoshimura, JHEP01(2021)121

v Efficiency of the TRG in the fermion theory w/ the sign problem

v We can directly manipulate the Grassmann integral w/ the TRG
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Expected phase diagram of the NJL model

T

v Effective theory of QCD

Nambu—Jona-Lasinio, PRD122(1961)345-358
Nambu—Jona-Lasinio, PRD124(1961)246-254

A

v Chiral restoration is expected
in cold & dense region

Asakawa-Yazaki, NPA504(1989)668-684

v Severe sign problem
in cold & dense region

___________
~ -
-~

-~

~

S

We apply the Tensor Renormalization Group (TRG) approach
to investigate the 1%t order chiral phase transition in cold & dense region
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NJL model at finite density

v W/ the Kogut-Susskind fermion
— Single-component Grassmann variables w/o the Dirac structure
— Staggered sign function n,,(n) = (=1)™* -1 withn,(n) = 1

v U : chemical potential

1
Slat = §a32neA23=1nv (n)|er20vax(n)x(n + ¥) — e H4vaz(n + Py (n)]

+ma*Zaepa ¥ (M) x (M) — goa*ZneaZy=1 ¥ (M) x(M)x(n + M x(n + )
( This formulation follows Lee-Shrock, PRL59(1987)14 )

v Continuous chiral symmetry for vanishing m :

iae(n)

x(m) = e *MWym),  x(n) - x(n)e

w/ a € Rand e(n) = (—1)M+n2+ns+n,



22/29
Auxiliary fermion fields to derive the TN rep.

SA-Kadoh, JHEP10(2021)188

Decompose hopping structures via

eA¥n¥niu = ([ [ dij,dnpe ™) exp[—VAP1, + VAT Pnsn]

Original Z TN rep for Z
_ [ with the weight e~
f over {l/}’ lp} over {ﬁ’ n}

7

Integrating out {1, Y}

Original Grassmann numbers are manifestly converted
into the Grassmann numbers ( = auxiliary fermion fields)
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TN rep. for a simple fermionic model

Z = [ [dpdp]i,, e Pnsa¥n*Bbnbnip

—>

Z = “Tr” [HnTlpx(n)le(n)LT’y(n)‘T’x(n)]

“Tr” denotes the weighted Grassmann integrals

eAJ’THﬁw" = (f f dﬁﬂ (n)dr)ﬂ (n)e'ﬁ“ (n)n”(n)) EXp[—\/ZI/jnmﬁu (n) + \/Znﬂ (n)l/)n]

eBUn¥nip — (f ] d{_ﬂ(n)d{ﬂ (n)e'zﬂ(”)qﬂ(”)) eXp[\/El/;n(”(Tl) + \/Efu(n)lpnm]

T () ¥y ()P ()T () i ) )
= f dlpndlpnnu:x,yexp[\/‘qnu (n)l/)n + \/El/)n(u (Tl) + \/Ecu (Tl - /j)l/)n - \/Zl/)nﬁy (Tl - ﬁ)]
¥, = (n,(n), (M) and ¥, (n) = (7,(n — 2),{,(n — )

Real Space

n+y

_{

)L

T

T/

n+x

X

P!

[

Tensor Network
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Correspondence btw tensors and the G tensors

s — «f _
G tensor is a multi-linear combination like 7,574 Zl]lr]rTl]lr]ral,Bfﬁf at

_ Tensor Grassmann tensor

index integer Grassmann number
contraction ;e | [ didne1 ...

Any TRG algorithm can be easily extended to investigate the Grassmann
path integral

(We can easily encode the Grassmann algebra in a coefficient tensor Tijirj r)

SA-Kadoh, JHEP10(2021)188, SA+, arXiv:2111:04240
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Heavy dense limit as a benchmark
withm = 10% g, = 32,D = 30

This limit allows us to compare numerical results w/ exact analytical ones
cf. Powlowski-Zielinski, PRD87(2013)094509

Number density

Fermion condensate

1.2 [ T { T T T T { T T T T { T T T T { T T T T { T [ T { T T T T { T T T T { T T T T { T T T T { T T T T
1x10™ o
— Heavy dense limitat 7=0 T
101 oo =128 i
-+ [ =1024 8x10” [ ]

08 — [

06 : ] 6x10° [~ 5
AT ] 4 1
v L ] S 10-5; a1

041 . * 1

[ i s ]

02 ] 2x10° [~ — ]

+ g [ | — Heavy dense limitat 7=0 ]
i p ] b |e—eL=128 k ]

0.0 o T O |[»-+ L=1024 " 1

_O L 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 ] _2><1 -5 L 1 1 l 1 1 l 1 l 1 1 l 1 1 l 1 1 1
'g.70 9.75 9.80 9.85 9.90 9.95 10.00 0970 9.75 9.80 9.85 9.90 9.95 10.00
u i

GATRG well reproduces the analytical results,
including the location of u. = In(2m) = 9.903



26/29

Converging behavior in bond dimension
withm = 0.01, gg = 32,L = 1024

T | T T T | |
2L _
10 = o—ou=2.875 3
- S S o—o u=4.000
10°E E
10" = E
Q -
10°& E
10° = E
- Sn = In Z(D)-In Z(D=55)
- b~ In Z(D=55)
107E E
C 1 | 1 | 1 | 1 | |
25 30 35 40 45 50

D

55

5p < 107%* has been achievedupto D = 55 at u =~ p,
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Chiral condensate
with go = 32,D = 55

L =1024% m-0
0.10 — ‘ 0.10 ——— ‘
i —m=001 i o= L =128
0.08 a—m=0.02 _ 0.08 o L =1024 N
0.06]- . 006/ -
L , /\ L
0.04 — 3004 .
- . V -
0.027 ] 0,027 _
0.00]- 000
- i 1 1 1 ‘ 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 i | i 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 ‘ 1 1 1 i
0035 1.0 20 30 40 50 0035 1.0 20 30 40 50
m n

Chiral symmetry is restored in the region with u = 3.0
A discontinuity at 4 = 3. 0 indicates the 1t order transition



4.5 T T T

( ~ Thermodynamic potential )

Pressure

oo =128
~ o+ [ =1024

4.0
35
30

25

A sharp increase

starting from u = 3.0

iy

1.0 20

50

<n>

Ingredients of the equation of state

withm = 0.01, go = 32,D = 55

Number density

28/29

12—
1.0~ if:i%&

08 -
0.6 -
04  AjumpfromOtol -
02F .
0.0¢ .
S T YO ) T R T R

Chiral phase transition in cold & dense region is 1%t order
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Summary

The TRG approach does not suffer from the sign problem and allows us
to investigate the thermodynamic limit

No difficulty to apply the approach to scalar and fermion fields on a
lattice

We made the first application of the TRG to (3+1)d QFTs on a lattice,
including scalar, fermion, and gauge theories.

Steady progress of the TRG approach has been made toward numerical
research on the regimes which are inaccessible with the standard MC
approach, even in higher dimensions

How about a higher-dimensional gauge theory w/ fermionic matter,
like QED?



Application to (3+1)d QFTs on a lattice

(3+1)d Z, gauge-Higgs model If time allows...
S. A. and Y. Kuramashi, JHEP05(2022)102

v Efficiency of the TRG in the higher-dimensional LGT



7., gauge-Higgs model in the unitary gauge

v Action of the (d + 1)-dimensional Z, gauge-Higgs model
§=—BYn2vsp Uy(MU,(n +V)U,(n + p)U,(n)

—N X Zv[e“&"dﬂa(n) U,(n)a(n + V) + e #va+tig(n)U,(n — v)o(n — 1?)]

n+p] Uv(n+p) oo

7

U,(n)(€ Z5): link variable (gauge field)
o(n)(€ Zy) : matter field

>
AN

Up(n) 4 \ U,(n+7)

n? > 40

U, (n)
v Choosing the unitary gauge, all the matter fields are eliminated

o(m)U,(n)a(n +79) = U,(n)

S = =B ¥nZvsp UyMU,(n + DU, (n + p)U,(n) — 2n ¥, By cosh(udy,a11) Uy (1)




Phase diagram of the (3+1)d Z,-Higgs mode

We investigate the phase diagram along the

i : irst- i rd the critical endpoint.
Critical endpoint first-order line toward the critical endpoint

We evaluate the average link (L), whose gap
vanishes at the critical endpoint.

[R Ly=— " O Inz
W =arovaen™

1t order
Higgs
_ L
Confinement Triple point 2" order
1st order

Free Charge




(3+1)D model at vanishing density

withD <52, ny —n_=0(10"%)
o0 T N B I B 1.0 L B e
- |0 B=031,p=00] . " 0o B=0.305
- 0.179 B 09 |z-ap=0.306 ]
3 Difference btw D = 48 and - A | ﬁgigig; |
§ 0amsf o D =52isabout 0.057% A 3 | p=0310
= £ | B=0315
§ 0.177F ® R 307 _
S %{) L
% 0.176 - ] 2 0-6? -
= 0.175F ? ® ® s 0:3 |
T N N B B B U e R N R S
0.174 28 32 36 1310 44 48 52 0.168 0.170 0.172 0.174 0.176 0.178 0.180
n
Bond dimension
. 0.5 T —T —T .
Mean-field (Bom) = (0.22,0.205) 0y = B( | o il '[o Ta] |
Brezin-Drouffe, colec) = L, U, ' ALYy =Bm.—n) || — Fit
NPB200(1982)93 " |[A(L) = A(B = BIP
03 -1
C'V'f (Besne) :
PRD21(1980)1006 = (0.22(3),0.24(2)) 021 r
TRGw/D =52 | (B:,1n.) 01 oI5
this work = (0.3051(2),0.1784(2)) N I A | P
0.168 0.172 . 0.176 0.180 0.304 0.308 B 0.312 0.316




Current status of the phase diagram near the CEP

0,30 T T T T | T | T |
i A Mean-field theory i
025 B Monte Carlo _
| E | ¢ TRG
i ¢ TRG(u=1) .
020+ A ¢ TRG (u=2) |
B 296 . |
No.1s5- S o
Triple point
_ e ple p
by the MC
0.10
% Creutz, PRD21(1980)1006
005+ Pure-gauge
i transition
0.0 ! | ! I . | | | | | L Balian-Drouffe-ltzykson,
' 8.15 0.20 0.25 0.30 0.35 0.40 0.45 PRD11(1975)2098
B

It seems that TRG and MC share a similar first-order lineat u = 0

A deviation about the location of the CEP



