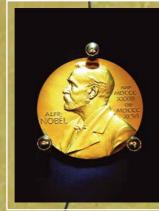
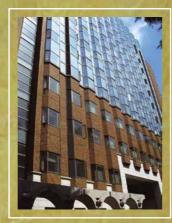
After Graduation ● 卒業生の進路

物理学科は研究者を目指して進学してくる学生が多い。大部分の学生が学部修了後、大学院に進学しているのが大きな特徴である。 卒業生の進路は大きく分けて2つあり、1つは博士号を取得して研究者の道を選ぶこと、もう1つは学部・大学院のどこか(博士取得後を含む)で企業や公務員などに就職することである。

研究者を目指す学生達は、博士課程卒業後、大学や研究機関における研究職、海外や国内の研究機関におけるポスドク研究員などが主な進路となる。東京大学は日本の物理学研究で重要な役割を果たす数多くの人材を輩出している。


学部・修士課程卒業生の進路

	学部	修士
卒業者数	75	98
就職	3	31
進学	70	67
その他	2	0


2024年3月

KAMIOKANDE検出器で

小柴名誉教授の受賞した 2002年ノーベル物理学賞

理学部一号館の正面

東京大学理学部 物理学科 進学案内 Physics 2024 https://www.phys.s.u-tokyo.ac.jp/

東京大学理学部物理学科·理学系研究科物理学専攻 〒113-0033 東京都文京区本郷7-3-1 TEL:03-5841-4242(代表) FAX:03-5841-4153 https://www.phys.s.u-tokyo.ac.jp/

物理学科への招待

物理学専攻長 物理学科長 松尾 泰

物理学とは何か、実験を通して得られた物質や力の性質を基礎方程式に落とし込み、そこから幅広い現象を説明する学問です。物理学はミクロな素粒子・原子核からマクロな宇宙まで幅広いスケールをカバーし、全ての自然科学の基盤であると同時に、自然科学の最先端にあって現在でもダイナミックに変化し続けています。

20世紀には物質の成り立ちを探る原子核物理学や素粒子物理学が発展し、物質の構成要素が原子、原子核、素粒子と順次明らかになりました。磁性や電気伝導・超伝導のように、原子や電子が凝縮することで現れる性質を研究する物性物理学も生まれました。これらは半導体や磁気デバイス、レーザー技術と光通信、太陽光発電や蓄電池、医療用MRI、原子力利用など、現代社会を支える様々な産業技術につながっています。さらに20世紀末から今世紀にかけて開発された様々な実験・観測装置は、物理学に新たな展開をもたらしました。たとえば走査プローブ顕微鏡は物質表面の不均一な構造を、ハッブル宇宙望遠鏡はダークマターの存在を明らかにし、カミオカンデ、スーパーカミオカンデによってニュートリノ天文学の幕が開きました。アインシュタインの最後の宿題と言われた重力波もついに検出されました。非平衡物理、生物物理、量子情報、AIの利用なども大きく進展していますし、ブラックホールの性質を用いて様々な物理現象を説明しようという試みも行われています。物理学は今後も私たちの自然観をより豊かにし、未来社会を切り開く原動力となると考えています。

理学部物理学科には約40名の教授・准教授・講師が在籍しています。また大学院の物理学専攻は物理学科教員のほか、物性研究所、宇宙線研究所、カブリ数物連携宇宙研究機構など14の学内組織、さらには外部機関である高エネルギー加速器研究機構(KEK)、理化学研究所、宇宙科学研究所の教員も含めて、講師以上の教員数が130名を超える、世界でも最大規模の物理学の教育・研究拠点であり、広大な物理学のほとんどの領域をカバーしています。

理学部物理学科では2~3年生で学問体系の基礎となる量子力学、熱力学・統計力学、相対性理論、固体物理学と関連する実験技術などを学び確かな土台作りを行います。4年生の研究室配属や大学院共通講義では最先端の研究に触れて実践することができます。卒業生の多くは大学院に進学し研究者を目指しますが、社会に出て物理学科で学んだ原理原則に立ち戻って問題を理解し解決するという能力を活かしている人も多くいます。

自然界の成り立ちや仕組みを理解したいという好奇心と探求心にあふれた方、曇りのない目と柔軟な発想で自然科学の新しい地平を切り拓きたい方、あるいは社会の課題解決に物理学を役立てたい方を、私たちは心から歓迎します。

写真で見る物理学科

理学部4号館1220号室で の講義風景です。

3年生の物理学演習の授業 では、順番に演習問題を解 きます。

Cosmology

surface effec

nucleus, quarks Dig-barg neutrino photons electron, molecule

> biophysics. life science

liggs beson, brain universe

3年生の実験の授業では、物性、光、エレクトロニクス、 生物実験などをおこない、物理実験の基礎を学びます。 4年生になると、研究室に配属されより専門的な実験、 演習をします。

5月祭では3、4年生有志により、物理学の最近のテーマを 題材にした研究発表が行われます。

毎年5月頃のガイダンスでは 大学院の志望を考えている 人へのセミナーなどが開か れます。

談話室では学生同士で気軽 に話せます。

Research field introduction ● 研究紹介

物理学科の先生たちの研究室では、世界的なレベルでの研究が行われています。みなさんが実際に研究活動を始めるのは大学院からになりますが、このページではその簡単な紹介をします。

詳細については、物理学科のホームページ https://www.phys.s.u-tokyo.ac.jp/field/ をご覧ください。

General Physics ● 一般物理

一般物理の主な研究領域としては「量子情報」「レーザー科学」「非平衡系」「プラズマ物理学」「生物物理」がある。これらは物理学における新たな周辺領域を形成する先端領域である。

Astrophysics ● 宇宙物理

美しい夜空の背後では、様々なスケールの天文·天体現象が絶え間なく続いている。それらを普遍な物理法則によって理解すること、そして、そこから基礎物理理論についての知見を深めることが、宇宙物理学の目指すところである。

Condensed Matter Physics ● 物性物理

物性物理学では、巨大な数の原子/分子からなる系の示す電気伝導・磁気・超伝導などの性質がどのように現われるかを理解し、さらに新しい性質を導出する原理を探究することを目的にしている。様々な対称性の変化を伴う相転移をはじめとし、自然を理解する上で極めて重要である。

Elementary Particle Physics ● 素粒子物理

「物質とは何か、力とは何か、時間や空間とは何か、」これらは太古より人類の想像力を喚起してきた問いである。素粒子物理学は、あらゆる物質の共通かつ最小の構成要素である素粒子と、素粒子の間に働く力の本質を研究する学問である。

Nuclear Physics ● 原子核物理

原子核物理学の大きな目的の一つは、強い相互作用の性質を明らかにしながら、それによって一固まりになっている原子核の構造を解明することにある。

Curriculum ● カリキュラム

物理学科では先端的な研究を基礎から一歩一歩学んでいける教育プログラムを作っています。 その大きな柱としては「講義」と「実験」があります。また各必修科目の講義に対して「演習」が行われ、 講義の内容を理解をより確実なものにします。各学年のカリキュラムの特徴は次のようなものです。

2年生Aセメスター

量子力学、電磁気学、物理数学などの基礎固めが中心となる期間です。

3年生

量子力学、統計力学、電磁気学などの基礎科目のより発展的な内容の学習・トレーニングと、物理実験の基本を学ぶのが中心となります。

4年生

最先端の研究の学修が始まるのと同時に、研究室に所属し研究の現場を体験します。

Required subjects and optional subjects of each school year ● 各学年の必須科目・選択科目

2年生 Aセメスター

	必修科目	選択科目
講義	物理数学Ⅰ・Ⅱ、物理実験学、 電磁気学Ⅰ、解析力学、量子力学Ⅰ	情報数学、形式言語理論、天文地学概論、地球惑星物理学概論、 化学熱力学 I)、量子化学 I)、無機化学 I)、物理学のための科学英語基礎
演習	物理学演習Ⅰ・Ⅱ	

3年生

	必修科目	選択科目
講義	電磁気学Ⅱ・Ⅲ、量子力学Ⅱ・Ⅲ、統計力学Ⅰ・Ⅱ	現代実験物理学Ⅰ、Ⅱ、流体力学、光学、物理数学Ⅲ、生物物理学、
演習	物理学演習Ⅲ~Ⅴ、物理学ゼミナール	固体物理学I、計算機実験I、物質科学基礎、量子コンピューター実習、 応用数学XC、解析学XC、代数学XC、幾何学XC
実験	物理学実験 I・Ⅱ、 計算機実験 I	

4年生

	必修科目	選択科目
講義	研究倫理	生物物理学特論I・II、普遍性生物学、場の量子論I・II、電子回路論、量子光学、
演習	理論演習Ⅰ・理論演習Ⅱ	固体物理学Ⅱ・Ⅲ、一般相対論、化学物理学、宇宙物理学、プラズマ物理学、 現代物理学入門、サブアトミック物理学、素粒子物理学、原子核物理学、
実験	特別実験I・特別実験I	統計力学特論、物理学のための科学英語特論、物性物理学特論、 非平衡科学、機械学習概論、現代物理と機械学習、量子コンピューター実習、
		連続系アルゴリズム、自然計算、量子計算科学、応用数学XC、 解析学XC、系外惑星、重力波物理学、代数学XC、幾何学XC

枠内より選択 他学科講義 (2024年度理学部便覧より)



物理学科がある理学部一号館は、安田講堂のすぐ後ろの、本郷キャンパスの 絶好の場所にあります。食堂、購買部、書籍部、御殿下グラウンドなどといった 学生生活に基本的な施設が徒歩3分以内にあります。

Daily Life ● 学部学生の一日

朝10時過ぎに物理学科の学生 達が登校。

SILLI

pm12:00

am 10 : 00

いった基礎的なものが多く、 4年生になると、固体物理学、 原子核物理学、宇宙物理学と いった高度で専門的な授業が 多くなります。

学科の仲間とともに昼食を。 物理学科の建物の周りには ゆったりとランチができる飲食 店が豊富。また、午後の授業は 1時からなので、キャンパスの 外に食事に行ったり、昼食後に 書籍部や購買部に行く時間も

十分です。

pm1 : 00

pm5:00

学生実験風景。週5日のうち 3日は、午後は実験の時間です。 ただし、毎週3日間必ず実験が あるわけではなく、1週間(3日 間)実験をおこなったら、次の 1週間(3日間)はレポートを書く ために午後はお休みになります。

After school ● 放課後の過ごし方

放課後の過ごし方は人それぞれ・・・。構内にあるドトールやスターバックスで友人とおしゃべりを 楽しんだり、御殿下記念館で体を動かしたり、バイトにいそしんだり・・・。仲間同士で自主的に

ゼミを開き、数学や物理を勉強する機会もあります。