
CNN-based ship classification method 

incorporating SAR geometry information

Shreya Sharma, Kenta Senzaki, Yuzo Senda, Hirofumi Aoki

Data Science Research Laboratories

NEC Corporation

Published in SPIE Remote Sensing 2018
https://doi.org/10.1117/12.2325282

https://doi.org/10.1117/12.2325282


2 © NEC Corporation 2015 NEC Group Internal Use Only2 © NEC Corporation 2019

Motivation

An accurate ship classification technology is needed

Ship classification enhances the performance of maritime surveillance

Helps in quick identification of vessels involved in illegal activities

© Nature Magazine

© NOAA/CC BY 2.0
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Ship Monitoring from Space

▌3 major sources of information:

 Automatic Identification System (AIS)

 Optical imagery

 Synthetic Aperture Radar (SAR) imagery

SAR images are now preferable for ship classification

AIS

Optical
SAR

• all weather

• day and night 

Requires 

equipment on 

each ship
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Existing SAR Ship Classification Methods 

1. Hand-crafted Features (HCF)-based

2. Convolutional Neural Network (CNN)-based

CNN Class

© JAXA

Bounding 

Box

© JAXA

Feature*

extractor

Classifier

(SVM) Class

Pros

• Intuitive features

Cons

• Requires expert 

knowledge of ships

Pros

• Does not require 

expert knowledge

Cons

• Requires huge 

training data

*Length, Area, Intensity, … etc.

These methods classify a ship based on its appearance 
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Problem

𝜃2= 40°

𝜃1= 30°
Appearance of a ship varies with SAR geometry

Same ship viewed 

under different angles © JAXA

© JAXA

Appearance information is not sufficient to achieve robust classification

𝜃1 𝜃2

SAR

Example:

Azimuth

Range
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Relationship between Appearance and SAR geometry

Incident angle (θ) is a key SAR geometry information which 

directly affects the appearance of a ship

θ changes the imaging order of the major scattering points

Incident angle indicates how appearance of a ship varies

O

𝜃1

𝜃2

A

B

C A

B

C

A1B1 C1 A2 B2

Radar 

Shadow

SAR Image Plane

OB<OA<OC OA<OB

Different 

appearance!

Toy Example:
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Proposed Solution

Use incident angle as an additional information in a CNN

Helps the CNN to combine feature information and

geometry information in feature space

CNN can follow SAR geometry changes

CNN Class

© JAXA

Metadata
Extract 

Incident Angle

© JAXA

Incident angle

information
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Representation of Incident Angle Information

Binning
One-hot 

encoding

Angle 

Info.
Incident Angle

…

Binning and one-hot encoding reduces the real-valued angles to 

discrete labels which accelerates CNN training

EX)   Bin 1: [25°- 27°)
Bin 2: [27°- 29°)

Bin 8: [39°- 40°)

…

EX)   Bin 1: 1 0 0 0 0 0 0 0

Bin 2: 0 1 0 0 0 0 0 0

Bin 8: 0 0 0 0 0 0 0 1

…
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Network of Proposed Method

SAR Image

FC 

120x1

BinningSAR

Metadata

Extracting 

Incident 

angle

CONV

18@9x9
POOL

18@6x6

CONV

36@5x5 POOL

36@4x4

CONV

120@4x4

CNN
CNN

CNN
CNN

CNN

N

One-hot 

Encoding

* Bentes, C., Velotto, D. and Tings, B., "Ship classification in terrasar-x images with convolutional neural networks,"

IEEE Journal of Oceanic Engineering 43(1), 258-266 (2018) 

Feature Information*

Ship Class

3x1

FC 

120x1

Flattening

+

3000x1

Merged 

3120x1

Combine

Incident Angle Information

120x1

8x1
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Evaluation

Test 1: Classification performance

• Accuracy

• F-measure

Test 2: Dependence on training data size
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Experimental Set-up

Container

Bulk-

carrier

Tanker

Satellite Sentinel-1

Resolution 20m

Polarization HH

Image size 128x128

No. images 200/class

Ground truth AIS + 

Marine 

Traffic

*Huang, L et al., "OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation," IEEE Journal of Sel. Top. in App. Earth Obs. and Rem. Sen. 11(1), 195-208 (2018). 

© ESA

© ESA

Dataset: OpenSARShip* Specifications

HCF 10 Features + SVM

CNN w/o incident angle

Conventional Methods

© ESA

© ESA

© ESA

© NOAA
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Network Training and Testing

• Five-fold cross-validation

• Training data split into: 80%, 66%, 50%, 25%, 20% of 

full dataset to evaluate the effect of training data size

• 10 initial random seeds

Training data: 80% Testing data: 20%

Full Dataset
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Result 1: Classification Accuracy (Overall)
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Proposed method outperforms the conventional methods

Results are averaged over 10 initial seed values
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Result 2: Classification Accuracy (Each class)
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Accuracy of bulk-carrier and tanker has improved
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Result 3: F-measure (Overall)
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Proposed method achieves the best overall f-measure
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Result 4: F-measure (Each class)
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Proposed method outperforms in bulk-carrier and tanker
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Result 5: Effect of Training Data Size
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CNN Proposed

Consistently 

high accuracy

Proposed method requires less training data for high accuracy
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Conclusion

▌A CNN-based ship classification method incorporating SAR 

geometry information is proposed

▌The proposed method uses incident angle information to 

separate feature information and geometry information

▌The proposed method outperforms the CNN without incident 

angle information by 1.05% and HCF method by 11.25%

▌The proposed method achieves best f-measure for bulk-carrier 

and tanker but fails in container

▌The proposed method requires 25% less training data as 

compared to the conventional CNN method
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Appendix
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A1: AIS + Synthetic Aperture Radar (SAR)

Legal

May be illegal

Vessel detected by  SAR 
only

Vessel detected by both 
SAR and AIS

A SAR image can be used in conjunction with AIS data to detect 

illegal vessels in ocean
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A2: Hand-crafted Features* 

Feature Formula

Length 𝐿

Width 𝑊

Perimeter 2 × (𝐿 +𝑊)

Area 𝐿 ×𝑊

Shape Complexity 𝑃/4𝜋𝐴 P: Perimeter

Compactness 𝑃/2𝜋𝐿

Elongatedness 𝐿/𝑊

Aspect Ratio 𝑊/𝐿

Centroid X 𝑀10

𝑀00
𝑀𝑖𝑗: Image Moment

Centroid Y 𝑀01

𝑀00
𝑀𝑖𝑗: Image Moment

*Lang, H., Zhang, J., Zhang, X. and Meng, J., "Ship classification in SAR image by joint feature and classifier selection," 

IEEE Geoscience and Remote Sensing Letters 13(2), 212-216 (2016). 
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Motivation

Example:

Change Detection 

System

Trends in 
the target area

Comparison

Multi-temporal 
SAR Images

Change 
Detection Maps

To develop change detection technology using Earth Observation data

For quick and detailed monitoring of important economic areas

Ground
Truth
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Optical Image v/s SAR Image

Optical Image SAR Image

• Nadir-view imaging
• Passive sensing – day only
• Cannot image over clouds

• Side-view imaging
• Active sensing – day/night
• Can image over clouds

© DLR© Google Earth
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SAR Change Detection Methods

ClassifyClassify

Compare

Change Map

Compute DI*

Threshold

Change Map

*Difference Image

Not useful 
when object 
is too small 

to be 
classified

Methods

Post classification 
based

Pixel-to-pixel 
difference based
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Low Resolution v/s Very High Resolution (VHR) SAR CD

Pixel-to-pixel difference method works well for low resolution SAR

We need a change detection method for VHR SAR

Low 
Resolution

High
Resolution

Image 1 Image 2 Change Map

© DLR © DLR

© ESA © ESA
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Problem In VHR SAR Change Detection

▌Camera Jitter

 causes co-registration error

▌Speckle

 characteristic property in SAR

 causes noisy background

▌Camouflage

 non-defined shape and boundary

 difficulty to detect small and 
moving objects

Image 1

Image 2

Low change detection 
accuracy

Pixel-to-pixel difference method cause many false changes in VHR

© DLR© DLR

© DLR© DLR

© DLR
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Solution

Feature-to-Feature difference method is robust to the conditions

Siamese network has been widely used for feature comparison 
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However, Siamese network is not yet implemented for VHR SAR

Comparison
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Proposed Siamese Network for VHR SAR
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𝒇𝟏

𝒇𝟐

Change Map

SAR Image 1

SAR Image 2

Siamese Network

Trained 

Network

Distance 

Calculation

TRAINING

TESTING

Euclidean distance-based loss is used for feature comparison

Compute

Loss
Y true

Y pred
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Experimental Evaluation

▌Application 
 Parking Lot Monitoring

▌Baselines:
 PCA + Kmeans [1]

 Sparse AE + Kmeans [2]

▌Evaluation Metrics 
 f-measure

 ROC-AUC

[1] T. Celik: Unsupervised change detection in satellite images using 
principal component analysis and k-means clustering, IEEE 
Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 772-776, 
2009. 

[2] M. Gong., H. Yang, and P. Zhang: Feature learning and change 
feature classification based on deep learning for ternary change 
detection in SAR images, ISPRS Journal of Photogr. and Remote 
Sensing, no.129, pp.212-225, 2017. 

Satellite TerraSAR-X

Resolution 1m

Polarization HH

No. of parking 

sites 

5

No. of 

images/site

10

No. of 

pairs/site

9

Patch sizes 10x10, 16x16

Ground Truth

(GT)

Manual

interpretation

Specifications 
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Dataset

Site 1

Site 2

Site 3

Site 4

Site 5

t0 t1 t2 t9 t10

Pair 1 Pair 2 Pair 9

…

…

…

…

…

…

…

Test

All images are copyrighted to DLR
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Result [1/4] : f-measure

0.32

0.59

0.41

0.72

0.62

0.76

0.66

0.76

0.2
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0.6

0.7

0.8

Pair 1 Pair 2

Comparison of f-measure for 2 test pairs

PCA-K SAE-K Siamese-10 Siamese-16

Siamese networks outperforms the conventional methods

+0.25

+0.4
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Result [2/4] : ROC-AUC
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0.93 0.93

0.4

0.5

0.6

0.7

0.8

0.9

1

Pair 1 Pair 2

Comparison of ROC-AUC for 2 test pairs

PCA-K SAE-K Siamese-10 Siamese-16

Siamese networks outperforms the conventional methods

+0.18
+0.12
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Result [3/4] : Change Maps

GT PCA-K SAE-K Siamese-10 Siamese-16

PCA-K SAE-K Siamese-10 Siamese-16GT

Test Pair 1

Siamese networks produce visually better change maps

Test Pair 2
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Result [4/4] : Colorized Change Map

Siamese-16Siamese-10

SAE-KPCA-KGT

Siamese networks reduce the number of false positives

Legend  
TP, TN, 
FP, FN
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Conclusion

▌Proposed Siamese neural network for change detection in VHR 

SAR 

▌Proposed network is trained with Euclidean distance loss function

▌Evaluated for parking lot monitoring using 1m resolution SAR 

images

▌Proposed network outperforms the conventional methods both in

f-measure and ROC-AUC

▌Proposed network produces visually better change maps

▌Proposed network reduces number of false positives

▌Future work

 reduce number of false negatives 

 ternary change detection






