Orchestrating a brighter world

Published in SPIE Remote Sensing 2018 https://doi.org/10.1117/12.2325282

CNN-based ship classification method incorporating SAR geometry information

Shreya Sharma, Kenta Senzaki, Yuzo Senda, Hirofumi Aoki Data Science Research Laboratories NEC Corporation

Motivation

Ship classification enhances the performance of maritime surveillance

Helps in quick identification of vessels involved in illegal activities

An accurate ship classification technology is needed

© Nature Magazine

Ship Monitoring from Space

SAR images are now preferable for ship classification

Existing SAR Ship Classification Methods

1. Hand-crafted Features (HCF)-based

2. Convolutional Neural Network (CNN)-based

These methods classify a ship based on its appearance

Problem

Appearance information is not sufficient to achieve robust classification

Relationship between Appearance and SAR geometry

Incident angle (θ) is a key SAR geometry information which directly affects the appearance of a ship

 θ changes the imaging order of the major scattering points

Toy Example:

Proposed Solution

Use incident angle as an additional information in a CNN

Helps the CNN to combine feature information and geometry information in feature space

Representation of Incident Angle Information

Binning and one-hot encoding reduces the real-valued angles to discrete labels which accelerates CNN training

Network of Proposed Method

Feature Information*

* Bentes, C., Velotto, D. and Tings, B., "Ship classification in terrasar-x images with convolutional neural networks," IEEE Journal of Oceanic Engineering 43(1), 258-266 (2018)

Test 1: Classification performance

- Accuracy
- F-measure

Test 2: Dependence on training data size

Experimental Set-up

Dataset: OpenSARShip*			Specifications		
		© ESA	Satell	ite	Sentinel-1
Container			Resol	ution	20m
			Polarization		НН
			Image size		128x128
Bulk- carrier			No. images		200/class
			Ground truth		AIS +
		© ESA			Marine Traffic
Tanker		© ESA	Convertienel Methode		
			Conventional ivietnods		
			HCF	10 Features + SVM	
			CNN	w/o incident angle	

*Huang, L et al., "OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation," IEEE Journal of Sel. Top. in App. Earth Obs. and Rem. Sen. 11(1), 195-208 (2018).

- Five-fold cross-validation

 Full Dataset
 Image: Constraining data: 80%
 Testing data: 20%
- Training data split into: 80%, 66%, 50%, 25%, 20% of full dataset to evaluate the effect of training data size
- 10 initial random seeds

Result 1: Classification Accuracy (Overall)

Results are averaged over 10 initial seed values

Proposed method outperforms the conventional methods

Result 2: Classification Accuracy (Each class)

Accuracy of bulk-carrier and tanker has improved

Result 3: F-measure (Overall)

Proposed method achieves the best overall f-measure

Result 4: F-measure (Each class)

Proposed method outperforms in bulk-carrier and tanker

Result 5: Effect of Training Data Size

Proposed method requires less training data for high accuracy

Conclusion

A CNN-based ship classification method incorporating SAR geometry information is proposed

The proposed method uses incident angle information to separate feature information and geometry information

The proposed method outperforms the CNN without incident angle information by **1.05%** and HCF method by **11.25%**

The proposed method achieves best f-measure for bulk-carrier and tanker but fails in container

The proposed method requires **25% less** training data as compared to the conventional CNN method

Appendix

A1: AIS + Synthetic Aperture Radar (SAR)

A SAR image can be used in conjunction with AIS data to detect illegal vessels in ocean

A2: Hand-crafted Features*

Feature	Formula
Length	L
Width	W
Perimeter	$2 \times (L + W)$
Area	L imes W
Shape Complexity	$P/4\pi A$ P: Perimeter
Compactness	$P/2\pi L$
Elongatedness	L/W
Aspect Ratio	W/L
Centroid X	$\frac{M_{10}}{M_{00}}$ M_{ij} : Image Moment
Centroid Y	$\frac{M_{01}}{M_{00}}$ M_{ij} : Image Moment

*Lang, H., Zhang, J., Zhang, X. and Meng, J., "Ship classification in SAR image by joint feature and classifier selection," IEEE Geoscience and Remote Sensing Letters 13(2), 212-216 (2016).

Orchestrating a brighter world

Published in the 66th Conference of the Remote Sensing Society of Japan http://www.rssj.or.jp/eng/activity/meeting-of-the-remoto-sencingsociety-of-japan/66th spring/

Very High Resolution SAR Change Detection with Siamese Networks

Shreya Sharma, Masato Toda Data Science Research Laboratories NEC Corporation

Motivation

To develop change detection technology using Earth Observation data

For quick and detailed monitoring of important economic areas

Example: Multi-temporal SAR Images

Change

Optical Image v/s SAR Image

Optical Image

SAR Image

- Nadir-view imaging
- Passive sensing day only
- Cannot image over clouds
- Side-view imaging
- Active sensing day/night
- Can image over clouds

SAR Change Detection Methods

Low Resolution v/s Very High Resolution (VHR) SAR CD

Pixel-to-pixel difference method works well for low resolution SAR

We need a change detection method for VHR SAR

Problem In VHR SAR Change Detection

Pixel-to-pixel difference method cause many false changes in VHR

Camera Jitter

causes co-registration error

Speckle

- characteristic property in SAR
- causes noisy background

Camouflage

- non-defined shape and boundary
- difficulty to detect small and moving objects

Low change detection accuracy

Solution

Feature-to-Feature difference method is robust to the conditions

Siamese network has been widely used for feature comparison

However, Siamese network is not yet implemented for VHR SAR

28

NEC

Proposed Siamese Network for VHR SAR

Euclidean distance-based loss is used for feature comparison

Experimental Evaluation

Application

Parking Lot Monitoring

Baselines:

- PCA + Kmeans [1]
- Sparse AE + Kmeans [2]

Evaluation Metrics

f-measureROC-AUC

[1] T. Celik: Unsupervised change detection in satellite images using principal component analysis and k-means clustering, IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 772-776, 2009.

[2] M. Gong., H. Yang, and P. Zhang: Feature learning and change feature classification based on deep learning for ternary change detection in SAR images, ISPRS Journal of Photogr. and Remote Sensing, no.129, pp.212-225, 2017.

Specifications

Satellite	TerraSAR-X		
Resolution	1m		
Polarization	НН		
No. of parking sites	5		
No. of images/site	10		
No. of pairs/site	9		
Patch sizes	10x10, 16x16		
Ground Truth (GT)	Manual interpretation		

Dataset

Siamese networks outperforms the conventional methods

Comparison of f-measure for 2 test pairs

Siamese networks outperforms the conventional methods

Comparison of ROC-AUC for 2 test pairs

Result [3/4] : Change Maps

Siamese networks produce visually better change maps

Test Pair 1

SAE-K

Siamese-10

Siamese-16

Test Pair 2

GT

\Orchestrating a brighter world NEC

Result [4/4] : Colorized Change Map

Siamese networks reduce the number of false positives

GT

PCA-K

SAE-K

© NEC Corporation 2019

- Proposed Siamese neural network for change detection in VHR SAR
- Proposed network is trained with Euclidean distance loss function
- Evaluated for parking lot monitoring using 1m resolution SAR images
- Proposed network outperforms the conventional methods both in f-measure and ROC-AUC
- Proposed network produces visually better change maps
- Proposed network reduces number of false positives
- Future work

- reduce number of false negatives
- ternary change detection

Orchestrating a brighter world

NEC brings together and integrates technology and expertise to create the ICT-enabled society of tomorrow.

We collaborate closely with partners and customers around the world, orchestrating each project to ensure all its parts are fine-tuned to local needs.

Every day, our innovative solutions for society contribute to greater safety, security, efficiency and equality, and enable people to live brighter lives.

Orchestrating a brighter world

