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MOTIVATION

e Deep learning brought unprecedented empirical/engineering
progress into many applications, including physics.

e Some open questions:

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

m Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
m Why doesn’t backpropagation head for a poor local minima?
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From “Reflections after refereeing papers for NIPS”, Leo Breiman

Still not answered!




SAMPLE COMPLEXITY

How many training samples are needed for a given task? Are we close
to the minimum? If not, is it because of architectures or algorithms?
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WHEN CAN A NEURAL NETWORK LEARN
A TEACHER-NEURAL NETWORK?

Teacher-network

Generates data X, n samples of d
dimensional data, e.g. random input
vectors.

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights

data /
X o o l \
: * labels
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WHEN CAN A NEURAL NETWORK LEARN
A TEACHER-NEURAL NETWORK?

Teacher-network Student-network

Generates data X, n samples of d
dimensional data, e.g. random input
vectors.

e Observes X, y, the architecture of the
network.

e How does the best achievable
generalisation error depend on the
number of samples n?

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights student-weights

data / data /
- labels N labels
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TEACHER-STUDENT PERCEPTRON

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK

1989

Three unfinished works on the optimal storage capacity

of networks data

X weights
E Gardner and B Derrida W

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel l b 1
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France apels

Received 13 December 1988

Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
soived exactly and the exact solution is compared to the bounds and to the results of
numerical simulations used for the two other models,

» Take random iid Gaussian X, and random iid w* from P,
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Solved using the replica method in the high-dimensional limit

RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

e Binary teacher-weights:
wee | |-

o 1st order phase transition in the
learning curve.
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VOLUME 65, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEPTEMBER 1990

Learning from Examples in Large Neural Networks

H. Sompolinsky®’ and N. Tishby
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

H. S. Seung

Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 29 May 1990)

A statistical mechanical theory of learning from examples in layered networks at finite temperature is
studied. When the training error is a smooth function of continuously varying weights the generalization
error falls off asymptotically as the inverse number of examples. By analytical and numerical studies of
single-layer perceptrons we show that when the weights are discrete the generalization error can exhibit
a discontinuous transition to perfect generalization. For intermediate sizes of the example set, the state
of perfect generalization coexists with a metastable spin-glass state.

PACS numbers: 87.10.+e, 02.50.+s, 05.20.—y

as a— 1.24. Above a =1.24 the only ground state, i.e.,
state with zero training error, is the m =1 state.'* How-
ever, for 1.24 < a < 1.63 metastable states with my < |
and positive training error exist. Above a=1.63 the
only stable state at 7> 0 is that with m =1, although
strictly at 7 =0 states that are stable to flips of single

weights are expected to be present even at higher a.'”

In contrast to the high-7" limit, in the darker region of
the phase diagram the metastable state represents a
spin-glass phase. The presence of this phase implies

; that there is an enormous number of metastable states

L e : alas separated by energy barriers which diverge with N,

QG — 1.245 dsST rendering the convergence to m =1 extremely slow. In




STATE-OF-THE-ART
GENERALIZED LINEAR MODEL

o Best achievable generalisation error for the single-layer teacher-
student model for any activation function, any prior on weights.

e Regions of optimality of approximate message passing algorithm.

e Rigorous proof that the replica solution for the teacher-student
model is correct.

Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19




BAYES-OPTIMAL GENERALIZATION

Posterior probability distribution:

1 d n
PwiyX) =7 Ewai)ng(yﬂ X, - w)

where P, (y,|X,-w) =60y, — p(X, - w))
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REPLICA METHOD SOLUTION

|
Def. “quenched” free energy: f= C}Eilo EIEy,X log Z(y, X)

Theorem 1:

f =supinf frs(m,m)

m M

Jrs(m, m) = ®©p (m) + a®p (m; p)

where
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REPLICA METHOD SOLUTION

|
Def. “quenched” free energy: f= C}Eilo EIEy,X log Z(y, X)

Theorem 1:

f =supint frs(m,m)

m m™m
A

; . mm
Jrs(m, m) = Dp (m) + a®p (m;p) )

Theorem 2: Optimal generalisation error

gtest — Ly r [¢(\/;v)2] 2 [(,0< V m*v + \/p = m*z)]z
P = [EPW(WZ)
v,z ~ N(0,1)
L~ by

where m* is the extremizer of frg




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a
repeat

AMP Update of wy,, V,

0.0 O
Vo gout,p,a t=1

Vi Z Floit
7

t E : t—1 t t—1
Wy — Fl.t'ia’i - Vp,gout,/.l.
7

AMP Update of X5, R, gout,u
géut,y, < Jout (w;tu Yps V;f)

—1
E: — | — Z inawgout (w;tu Yus V;f)
n

t t—1 t t
Ri — a + Ez Z F#’igout,y,
n
AMP Update of the estimated marginals a;, v;

a'g — fa(E:7R:)

vi = fo(Z5, R)
bt Simple to implement, only
until Convergence on a,v ) R .
output: a,v. matrix multiplications, O(N2)

£.(5,R) = fd:z:a:Px (z) e—_(z__Eg)Q £(5,B) = EOn (5. ) dePout(’y|Z) (z — w) e_(z;_“;’)z
a ’ - (z—R)2 °* v\ - RJa\~» . gout(w) Y, V) = .

w

_(=—Rr)? 2
J dz Px(z) e = VfdzPout(y|z)e_£WL




STATE EVOLUTION

Bayati, Montanari'i1, Bayati, Lelarge, Montanari’12, Javanmard, Montanari’13.

Define: : g then MSE({t) =p—m'

mt in the AMP algorithm evolves as:
m't! = 20n¢l(I)Pw(nA1t)

mt o QO{am@Pout (mt; /0)

Recall the RS free energy

Va\

Jrs(m, m) = @p () + adp (m; p) >




BOTTOM LINE

Jrs(m, m) = ®©p (m) + a®p (m;p)

out

frs(m) = infys, frs(m, M)

e AMP-MSE given by the local maximum of the free entropy
reached starting from small m/large MSE.

e MMSE is given by the global maximum of the free entropy.

>

MMSE = p — argmax frg(m)

free entropy

MSEamp = p — mamp

argmax frs(m)




SPHERICAL PERCEPTRON
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BAYES VS RISK MINIMISATION

e So far: Bayes-optimal estimation = marginals of the
posterior:

1 L -
P |3 X) = o EPWWQEPm@ﬂ X, - w)

e More common: Empirical risk minimisation =
minimisation of a loss function:

n
min,, [ )’ £(3,. X, - W) + Allw|}
H—1
e.g. square loss £(y,z) = (y — z)z, logistic loss £(y, z) = log,(1 + ™)




BAYES VS RISK MINIMISATION

X -Wi> P, = ./(0,1) |  Optimally regularized logistic |
. regression essentially Bayes-optimal

Rademacher bound
| optimal
Iogistic regression xxxxx
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# of samples per dimension Aubin, Lu, FK, LZ, 2006.06560




BINARY PERCEPTRON
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BINARY PERCEPTRON
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PHYSICS VS LEARNING

liquid supercooled liquid

impossible computationally hard possible

Test error

impossible




PHASE RETRIEVAL
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® G-VAMP

0.3 0.4 0.5 0.6

o = 1 # of samples needed for perfect generalisation for any algorithm.

— 1.13 # of samples needed for perfect generalisation for approximate message
AAMP - : : . : :
passing algorithm (conjectured optimal among polynomial ones).




Is this bringing us towards the theory of deep learning?




TOWARDS THEORY OF DEEP LEARNING?




TOWARDS THEORY OF DEEP LEARNING?

color-code:
described so far
needed

message passing
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ADDING HIDDEN UNITS

Aubin, Maillard, Barbier, Macris, Krzakala, LZ, NeurIPS’18, arXiv:1806.05451.

Committee machine

weights

data
‘ p input units X w / l \
labels

Vi L=3 layers

O K hidden units ye ) W learned, Vi & Vo fixed

O output unit

n training samples

mit '~ ° a=nd=01) K=0(1)

d = o0

Replica solution in Schwarze’92.




The committee machine: Computational to statistical
gaps in learning a two-layers neural network

Benjamin Aubin*', Antoine Maillard', Jean Barbier®® h . 1 b 3 :
Florent Krzakala’f,, Nicolas Macris®, I:enka Zdeborova* Tec nlca CO ntrl Utlon °
Approximate message
[ ]
Heuristic tools from statistical physics have been used in the past to locate the paSSIHg and prOOf Of the
phase transitions and compute the optimal learning and generalization errors in o
the teacher-student scenario in multi-layer neural networks. In this contribution, repll ca fO rmula .

we provide a rigorous justification of these approaches for a two-layers neural
network model called the committee machine. We also introduce a version of
the approximate message passing (AMP) algorithm for the committee machine
that allows to perform optimal learning in polynomial time for a large set of
parameters. We find that there are regimes in which a low generalization error is
information-theoretically achievable while the AMP algorithm fails to deliver it;
strongly suggesting that no efficient algorithm exists for those cases, and unveiling
a large computational gap.

Abstract

T ——

Theorem 2.1 (Replica formula) Suppose (H1): The prior Py has bounded support in R ; (H2):
The activation ¢qy; : RE x R — R is a bounded C? function with bounded first and second
derivatives w.rt. its first argument (in R¥ -space); and (H3): Forallp=1,...,mandi=1,...,n
we have i.i.d. X,; ~ N(0,1). Then for the model (2) with kernel (6) the limit of the free entropy is:

lim f, = lim lIF.‘)ln.ZT,, = sup inf {wpo (r)+a¥p  (q;p) — %’I‘r(rq)} : (7)

n—oo n—oo N TES?; quIt— (p)

where o« = m/n and where Vp_ . (q;p) and ¥p,(r) are the free entropies of two simpler K-
dimensional estimation problems (3) and (4).




SPECIALISATION TRANSITION

Aubin, Maillard, Barbier, Macris, Krzakala, LZ, NeurIPS’18, arXiv:1806.05451.

hidden units
Yy = mgn[&gn
K=2 2

e Specialization phase transition
= hidden units specialise to

correlate with specific features.

| ® Consequence Sharp threshold |

for number of samples below |
| which linear regression is the
best thmg to do

+ sign Z (X,u,iwi,Z)]
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Generalization error €,(«)

—— Specialization




COMPUTATIONAL GAP

Aubin, Maillard, Barbier, Macris, Krzakala, LZ, NeurIPS’18, arXiv:1806.05451.
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a = (# of samples) /(#hidden units x input size)




OPEN PROBLEM

' p # input units
O k # hidden units
O m # output units

2 layers
w: & w learned

n training samples

Limit:: n—>o  k—o00 n/fp=06(l)
D 00 I - kip = ©(1)
mlp = 0O(1)

iid inputs X, iid teacher weights w,* and w.*, generate output y.

Open question: Optimal generalisation error of the student network?

No known (even heuristic) formula.



TOWARDS THEORY OF DEEP LEARNING?

color-code:
described so far

& * see also: deep linear networks,
and infinitely wide ones.
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TOWARDS THEORY OF DEEP LEARNING?

color-code:
described so far

Wy - 00 * see also: deep linear networks,
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message passing
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PHASE RETRIEVAL
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AAMP - : : . : :
passing algorithm (conjectured optimal among polynomial ones).




GRADIENT DESCENT FOR PHASE RETRIEVAL

n

Loss function: L} )= Z [ . Ay )2]2

L U]
p=1

d
where y,=|) X w
=

Gradient flow: wi) = —0,Z ({Wj(f) }JC-Z=1) + u(®wi?)

T

ensuring ||w||% — U

Initialisation: w;(0) ~ A#(0,1)




GRADIENT DESCENT NUMERICALLY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, 2006.06997.

N=d

1 —— N=4096
— N =2048
— N =1024
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PERFORMANCE OF GRADIENT DESCENT

Closing the gap between GD and AMP?

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

~7 ( poly(log d)

GD numerics




OVER-PARAMETRISATION

&
GRADIENT DESCENT




GRADIENT DESCENT FOR PHASE RETRIEVAL

Loss function: ~ Z({w;, }%" ) =

Wide (m>d) over-parametrised
two-layer neural network

Gradient flow: W, () = -0, Z <{ij(f) }Jc-f’bnil)

Initialisation:  w,,(0) ~ A4(0,1)




OVER-PARAMETRISED LANDSPACE

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

Theorem 3.1 (Single unit teacher). Consider a teacher with m* =1 and a student with m > d hidden
units respectively, so that A* has rank 1 and A has full rank. Given a data set {xy}}_, with each x}, € R¢
drawn independently from a standard Gaussian, denote by M,, 4 the set of minimizer of the empirical loss
constructed with {xy}}_, over symmetric positive semidefinite matrices A, i.e.

Mpda= {A = AT positive semidefinite such that E,.(A) = 0} . (10)
Set n = |ad]| for « > 1 and let d - co. Then

lim P (Mjaqa # {4°}) =1 ifa€[0,2 (11)

whereas

lim P (Magpa={4"}) >0  ifac(20) (12)

d—oo

1 = *k 1 m* Xk *k
At) = - Zwi(t)wf(t), A" = - sz’ (w))",




GD FOR OVER-PARAMETRISED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

Theorem 4.1. Let {w;(t)}*, be the solution to (3) for the initial data {w;(0)}*,. Assume that m > d
and each w;(0) is drawn independently from a distribution that is absolutely continuous with respect to the

Lebesque measure on R%. Then

1 m
~ ng"’('w;’o)T as t— oo (15)

1=1

R R SR _
A_mizzlwz(t)'wz- (t) = A =

and A s a global minimizer of the empirical loss, i.e.

Ep(Aw) = 2Ln(w, ...
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PERFORMANCE OF GRADIENT DESCENT

Sarao Mannelli, Vanden-Eijnden, LZ, 2006.15459

i
I
|

\

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

i 113 ~7 Cd  poly(logd)

——

IT AMP GD in an over- GD numerics
parametrised network




ANALYSIS OF GRADIENT-BASED ALGORITHM IN
NON-CONVEX HIGH-DIMENSIONAL PROBLEMS

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; Marvels and Pitfalls of the
Langevin Algorithm in Noisy High-dimensional Inference; Phys. Rev. X’20,
arXiv:1812.09066.

Sarao Mannelli, Krzakala, Urbani, LZ; Passed & Spurious: Descent Algorithms and Local
Minima in Spiked Matrix-Tensor Models; ICML’19, arXiv:1902.00139.

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ; Who is Afraid of Big Bad Minima?
Analysis of Gradient-Flow in a Spiked Matrix-Tensor Model; NeurIPS’19,
arXiv:1907.08226.

Mignacco, Urbani, Krzakala, LZ; Dynamical mean-field theory for stochastic gradient
descent in Gaussian mixture classification; NeurIPS’20, arXiv:2006.06098.

Sarao Mannelli, Biroli, Cammarota, Krzakala, Urbani, LZ; Complex Dynamics and Simple
Neural Networks: Understanding Gradient Flow in Phase Retrieval, NeurIPS’ 20,
arxXiv:2006.06997.

Mignacco, Urbani, LZ; Stochasticity helps to navigate rough landscapes: comparing
gradient-descent-based algorithms in the phase retrieval problem, MLST,
arXiv:2103.04902.




TOWARDS THEORY OF DEEP LEARNING?
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TOWARDS THEORY OF DEEP LEARNING?
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GANs generated photos of people.




DATA ON MANIFOLDS

e Real input data lie of low-dimensional manifolds; they can be
generated by GANs and VAEs with small input dimension.




HIDDEN MANIFOLD MODEL

Goldt, FK, Mézard, LZ; arXiv:1909.11500

o Real input data lie of low-dimensional manifolds; they can be
generated by GANs and VAEs with small input dimension.

e Hidden manifold model (C random iid matrix, F generic).

X,eR* C,eR* FeRP
p input & d latent dimension, p>d.

X, =fFC) y,=8C)




Hidden manifold model

low-dimensional
sub-space




Hidden manifold model

low-dimensional point coordinates
sub-space In sub-space
" (dimension d)




Hidden manifold model

low-dimensional point coordinates
sub-space In sub-space
" (dimension d)

Key: The true labels depend only on
the latent representation of the point!




Hidden manifold model

low-dimensional point coordinates
sub-space | In sub-space

(dimension d)

= Non-linear

Data points _
function

(dimension p)

Y C Key: The true labels depend only on
= g ( ) the latent representation of the point!




GAUSSIAN EQUIVALENCE

In the limit p,n,d — oo, while n/p = ©(1) and d/p = O(1),
generalisation error of the committee machine for

1s the same as the one of

X, =KFC,+ K*/V(O,l]p) + Kol v, = 8(C)

ko = E (@], 5 = E |2f(2)|, &, = E |[f(2)*] — x5 — K7

Formally: Goldt, FK, Mézard, Reeves, L.Z, arXiv:2006.14709




N ao
V, = yKl[Egy
A a9
QS_7K1[E§y
n =2

{4 m = yKl[Eé’y
V. = 2
w = aKkiE:
qw=aK3([E§y

Replica solution

Consider the unique fixed point of the following system of equations

| o nly, o (
NE (y,a)o) ﬂ(‘y/ 1)], V, = ‘A/L (1 —Z gﬂ(—z)>,
m? + §, )
(’7()’, 601) = a)1>2 qs = v ll - 2Zg'u(_z) + Zzgﬂ(_z)]
Z (v @) V2 ; S q 2
. KV — | —Z (_Z)+Z /(_Z)]’ . L2 ghveenass
A+ V)V, l S e n(y, w) = argmin “ 2;0 ) +7(y, x)
& B n’>l R ‘.lllllll
0, % (v ap) L2 1)] Ym=2(1-z,-2), < R s P
S Z(y, ) = [ =727 (y 4 )
o (y 0) awn(y,wl)] V, = l+”‘7 H 1 +ZgM(—Z)], ] 27V -
9 V 9 w
2 G 1 oy
3 L1424
(v, a0) <'7(y,w1)—w1)2 =V [y t28(=2)
Z (v, 09 ; M2+ 4,
E ot -0+ 22,

A
gtraining 0 %q;: i [Eé,y [‘Z

with o) = M*/1/0Q* ¢, o/

(v.@5) £ (1, 01) |

0*¢

|Gerace, Loureiro, FK, Mezard, LZ, ICML, 2002.09339],



PHASE DIAGRAM

= ert(FC,) Y= Sign(C,,t : WO) classification, least-squares loss
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CAPTURING LEARNING CURVES
OF REAL DATA

e Loureiro, Sicuro, Gerbelot, Pacco, Krzakala, LZ, Learning curves of generic features
maps for realistic datasets with a teacher-student model; arXiv:2102.08127.

e Loureiro, Gerbelot, Cui, Goldt, Krzakala, Mézard, LZ, Learning Gaussian Mixtures with
Generalised Linear Models; arXiv:2106.03791.
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