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Outline

® |ntroduction
e Statistical physics and Bayesian inference
m Sparse estimation
* Group testing
m Bayesian inference for group testing

® Qur contributions

e Bayesian statistical decision for group testing

m Make a diagnose as an optimal “action”

e Algorithm for actual inference in group testing: message passing

* Related topics in Bayesian group testing
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Statistical Physics and Bayesian Inference

Randomness and data
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* Purpose: Model the generative process of given data y

O y is considered to be a realized value of a random variable.

e Assumption: The generative process is governed by a parameter x

[ The distribution of x is the center for the modeling.

® Definition:

A Bayesian statistical model is made of a parametric statistical model

(likelihood), f (¥|x), and a prior distribution on the parameters, ¢(x).

fylx)¢(x)
Z(y)

Posterior distribution P(x|y) =
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Bayesian inference

* y:Data
 x: Model parameter :
P(x|y) = —f(y|x)p(x)
Statistical physics Z(y)
* y:Quenched
randomness

 x:Dynamical
variables
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Bayesian inference

* y:Data { Prior J
distribution
* x:Model parameter /
1
Pxly) === f(¥|x)¢(x)
Statistical physics ) \
* vy :Quenched > ~
randomness exp(—ph)
 x:Dynamical Ext.ernal
variables field
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Posterior distribution

Bayesian inference

[} . P .
e o [“ke“h""d][ distribution ]
* x:Model parameter l/ /
P(x|y) = 70y )f(ylx)cb(x)
Statistical physics
* y:Quenched \ \
randomness exp(—BH(x; y)) exp(—ph)
 x:Dynamical Hamiltonian Ext.ernal
variables field

- J
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Posterior distribution

Bayesian inference Probability

. distribution Prior
* v:Data .

g of data [ Likelihood ] [ distribution
* x:Model parameter \/ I/ /
P(x|y) = z —— 0o (x)

Statistical physics ) \ \
* y:Quenched

randomness [ Partition J exp(—BH(x; y)) exp(—fh)
¢ x :Dynamical function Hamiltonian External

variables field

- J
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Posterior distribution

Bayesian inference Probability
. distribution Prior
* vy:Dat g
e of data [lee“hOOd]{ distribution J
* x:Model parameter v l/ /
P(xly) = f(ylx)d)(x)

Statistical physics
* y:Quenched \ \

randomness [Partltlon J exp(—BH(x;y)) exp(—fh)
¢ x :Dynamical function Hamiltonian Ext.ernal
variables _ field y
® Point estimates = Thermal average
* Posterior mean: (x;) = z x; P(x|y)
X

 Maximum a posteriori estimator : X; = max P(x|y) ... Ground state
Py
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® References

* Mézard, Parisi, Virasoro, “Spin-glass theory and beyond” (1987)
* lba, “The Nishimori Line and Bayesian statistics”, J Phys A (1999)

* Nishimori, “Statistical Physics of Spin Glasses and Information Processing:
An Introduction” (2001)

* InJapanese, Fifx [ A>T 7 X EERFEETNF] (1999)

® Applications

e Coding theory

Learning theory
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Signal processing
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® References
* Mézard, Parisi, Virasoro, “Spin-glass theory and beyond” (1987)
* lba, “The Nishimori Line and Bayesian statistics”, J Phys A (1999)

* Nishimori, “Statistical Physics of Spin Glasses and Information Processing:
An Introduction” (2001)

* InJapanese, Fifx [ A>T 7 X EERFEETNF] (1999)

® Applications

e Coding theory Statistical-physics-based studies

Learning theory m Phase transition in learning/inference

Computational science m Development of algorithms

Signal processing

m Analysis for algorithms
Statistics \ /
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® Assumption: The model parameter is sparse.

* Sparse: There exist many zero components.

* The assumption is based on the empirical knowledge that
natural data is sparse on some basis.

|
\.
) }

\\ ’ !
Reconstructed images 20%
using x%-top components on
the discrete cosine basis
[Lustig et al. (2007)]
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Sparse estimation

® Assumption: The model parameter is sparse.

* Sparse: There exist many zero components.

* The assumption is based on the empirical knowledge that
natural data is sparse on some basis.

* Sparsity assumption reduces the effective dimension of variables to be estimated

* Compressed sensing (signal processing), LASSO (statistics)

Sparse
expression
Data Basis
N Reconstructed images
— zero using x%-top components on
— component the discrete cosine basis

[Lustig et al. (2007)]
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Group Testing

A sparse estimation problem for discrete variables
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Tests on 5

pools
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Group testing

Perform tests on pools consist of mixed samples to

e Reduce the number of tests

* Correct test errors

Positive Negative Positive
Tests on 5

pools
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e Reduce the number of tests

* Correct test errors
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The number of
positive patients is
sufficiently small.

Mixing of
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Group testing

Perform tests on pools consist of mixed samples to

e Reduce the number of tests

* Correct test errors

Positive Negative Positive Assumption:

The number of
positive patients is
sufficiently small.

[ “f;ﬁilgle‘f ]> “‘0" '\ [ Inference ] I

Sparsity
(T o

() ) T assumption
atents 0 ) ‘m w [ ]

Aldridge et al., “Group Testing: An Information Theory Perspective” (2019)

Tests on
pools
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Negative Positive Positive Negative

UOO0) (G0N |udt) (GO0
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Negative Positive Positive Negative

UOO] (GO0 |DONE) | GEO
dg G

* First stage: Perform tests on random pools

* Second stage: Test patients in positive pools

Dorfman, Ann. Math. Statist. (1943)
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Deterministic approach: Two-stage testing

Do) (G6| (G0l (6EK

SR i

* First stage: Perform tests on random pools

* Second stage: Test patients in positive pools
* Expected number of tests: M + {1 — (1 — H)NP}MNp (at minimum ~ 2v/6N)

M: Number of pools, 6: Prevalence (fraction of positive patients), N,,: Pool size

N: Number of patients (N = N, M) Dorfman, Ann. Math. Statist. (1943)
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Weakness of deterministic approaches

® Not robust to test errors

* In deterministic approaches, the possibility of false test results is
not considered.

M In practice, testing cannot be error-free.

* Pre-analytical error: inappropriate sample transport, insufficient number of samples
* Analytical error: calibration error, systematic error, random error

e Post-analytical error: incorrect calculation

[Teshome et al., Journal of Multidisciplinary Healthcare (2020)]

€ Modeling of test output considering both patients’ states

and test errors will be useful for robust inference.
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Bayesian Inference for Group Testing

Modeling of outputs of tests performed on pools
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Basic idea

® Consider the test result y € {0,1} as observed data
* Yy Test results of u-th pool (1 = positive, 0 = negative)

— The state of patients corresponds to the
underlying model parameter x(% e {0,1}".

. xl-(o): True state of i-th patient (1 = positive, 0 = negative)

® Infer x from the test results y

= Model the generative process of y using x and set appropriate x

4 Yy

° . . MxN .
The pooling matrix F € {0,1} is known. There are two kinds of group testing.

m Fy; = 1:i-th patient is in u-th pool. » Non-adaptive GT: F is fixed in advance.

m f,; = 0:i-th patient is not in u-th pool. * Adaptive GT: F is sequentially designed.

\, S
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Test results Patients states

Pooling matrix F € {0,1}M*N x € {0,1}V

Positive
Negative

y € {0,1}1

Loglcal
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Matrix representation

Test results . Patients states
. . x
y € {0,131 Pooling matrix F € {0,1} x € {0,1}N
0 o 1. 0 0 1 0 0 1 1 — Positive
— \ V O *— Negative
15t pool contains 0
2nd 5t and 8th 0
patients 0
1
0
Logical 0

sum
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. . x
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Matrix representation

Test results Patients states
y € (0.1}M Po_oling matrix F € {0,1}M*N x € {01
0 O;/1,0 0 1 O 0 1 1 =— Positive
= 0 S ‘ V 0 *— Negative
0 1t pool contains 0
1 2nd 5th and gth 0
0 patients 0
N :
Test [ 2nd patient is in ] Logical 0
error 15t and 4t pools sum

* Number of tests (pools) M is smaller than number of patients N.
* |dentification of x from y is an underdetermined problem.
* |dentification can be achieved if prevalence 8 is sufficiently small.



Matrix representation

* Number of tests (pools) M is smaller than number of patients N.

Test results

y € {0,1}"
0
Test
error

Pooling matrix F € {0,1}M*N

Patients states

* |dentification of x from y is an underdetermined problem.

Identification can be achieved if prevalence 8 is sufficiently small.

Positive

Negative

15/50

x € {0,1}V
oOo/1,0 O 1 0 0 1 1 ——
ol N\ V 0
0 1t pool contains 0
1 2nd 5th and gth 0
0 patients 0
— 1
A\ 0
2"d patient is in Logical 0
15t and 4t pools sum

Ve

Important model
parameters

- M/N
. 0
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Modeling of test output
® Assumed generative process for test results y (likelihood)

flx,F) = ]_[[{pryv + (1= pr) (1 =W (% F,) +

 F,:v-th row vector of F
+ {prpyy + (1 —prp) (1 — 1)} (1 —T(x, Fv))]
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flx,F) = ]_[[{pryv + (1= pr) (1 =W (% F,) +
ey + (1= prp)(1 = 1)} (1 —T(x, Fv))]

| T(x, I~3'V) = V; F,;x; * True state of v-th pool (V: logical sum)
* Pools with at least one positive patient are positive

B Parameters
* prp - True positive probability

* pgp - False positive probability
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® Assumed generative process for test results y (likelihood)

M

fo1xF) = | [y, + 1 = pro)1 = 9T (% F,) +

v=1

+{prpyy + (1 — prp)(1 — 1)} (1 - T(x, Fv))]

| T(x, 17'1,) = V; F,;x; * True state of v-th pool (V: logical sum)
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B Parameters

prp - True positive probability

prp - False positive probability

o
=
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Modeling of test output

® Assumed generative process for test results y (likelihood)

M

fo1xF) = | [y, + 1 = pro)1 = 9T (% F,) +

v=1

+{prpyy + (1 — prp)(1 — 1)} (1 - T(x, Fv))]

| T(x, 17'1,) = V; F,;x; * True state of v-th pool (V: logical sum)

Pools with at least one positive patient are positive

B Parameters

prp - True positive probability

prp - False positive probability

B Assumption

Tests are independent.

o
=

16/50

o F,:v-th row vector of F

Pool Test
state result
T y
Ptp
1 > 1
Prp
0 0
mmmm) y, =1lor0
T =V; F,x;
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Posterior distribution

® Prior distribution

N
P(x) = {1-6)1—x;) + 0x;3}, 0 : Prevalence
L

B Assumptions

* Independence between patients

e Common prior probability

® Posterior distribution
1

Py, F) = 7S

FOlePe@,  where Z0) =) fOlxFX)
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Posterior distribution
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P(x|y,F) = )f(}’Ix , F)p(x)
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Problem caused by Bayesian inference

* Basis of inference is the posterior distribution.

4+ Here, we focus on the posterior marginal probability p; € [0,1].

s

Posterior distribution Posterior marginal probability
on {0 13 for each patient

1
)f(ylx )¢ (x) py = Ty)zxifmx, F)op(x)

| —
\ 4

P(x|y,F) = 70y
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Problem caused by Bayesian inference

* Basis of inference is the posterior distribution.

4+ Here, we focus on the posterior marginal probability p; € [0,1].

We need a map from p; € [0,1] to X; € {0,1} to determine patients’ states.

C/Q Pi
? .
1 — p; ’ Determine
‘ patient’s state
I %; € {0,1}
C 0 1
Posterior distribution Posterior marginal probability
on {0 13 for each patient

1
P(x|y,F) = )f(ylx ,F)gp(x) Pi = T}’)z x; f(ylx, F)¢(x)

Z(y
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Bayesian Statistical Decision
for group testing

Maximization of expected utility

Sakata & Kabashima, arXiv:2110.10877
(submitted to IEEE Transaction on Information Theory)
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Decision-making

® Action: a strategy that is being considered

4+ In the Bayesian group testing problem:
* The possible actions are to make diagnoses as X; = 1 or X; = 0.

* We need to choose one of the actions based on
the posterior marginal probability p;.

* In medical statistics, p; corresponds to the diagnostic variable.

® Utility: a reward for the action
@® Utility function: total reward considering the patients population

Optimal action is defined as that which maximizes the expected utility.

Expectation is explained later.
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Utilities for action on single patient )

Target hypothesis
(Patient’s true state)

| posive | Negatve

Diagnosis .
(Piagnosis)




Utility function = relative desirability of outcomes

Utilities for action on single patient

Diegnos)

Target hypothesis
(Patient’s true state)

urtp Ufpp

UFN UTN

®* UTp > URN

®* UTN > Ufpp

J

21/50
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Utilities for action on single patient )

Target hypothesis
(Patient’s true state)

Action Positive urp Upp * Urp > UfpN
Diagnosis .
(Diag ) Negative UEN UTN * UTN > Upp
g Y

® Definition: Utility function for patient population

U= UTPTP + uFNFN + UFPFP + uTNTN



Utility function = relative desirability of outcomes

Utilities for action on single patient

Target hypothesis
(Patient’s true state)

| Positive | Negative RIS

Action Positive urp Upp * Urp > UfpN
Diagnosis .
(Diag ) Negative UFN UTN * UTN > Upp

® Definition: Utility function for patient population

U= quTP + UFNFN + UFPFP + uTNTN

 TP,FN =1—TP,FP,and TN = 1 — FP are functions of action X; and true parameter x 0

N N
1 1 A
T (x2,20)) = 55 2 5% ), PP (. 80) = g5 ). (1= %) 2 )
i=1 =1

21/50
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e TP+ FN =1and FP+ TN = 1, hence

U(x,x?) = urpTP + upnFN + ugpFP + upyTN

= (upNy — utp)FN + (ugp — urn)FP + urp + ury.
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* We define the risk function as
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* App = urny — upp (> 0) ... False positive loss



Utility function — risk function

e TP+ FN =1and FP+ TN = 1, hence

U(x,x?) = urpTP + upnFN + ugpFP + upyTN

= (upNy — utp)FN + (ugp — urn)FP + urp + ury.

 We define the risk function as
R(Z,x©; 1) = ApnFN(Z, x©) + AppFP (7, x(0).

m Loss caused by false positives or negatives
* Apn = up — upy (> 0) ... False negative loss

* App = urny — upp (> 0) ... False positive loss

® Maximization of the utility function = minimization of the risk function

22/50
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Bayes risk and optimal action

® Definition: Optimal action X* minimizes the Bayes risk

as x* = min R[%; 1]

y : Test results
e x(9 . patients’ true states
« X(y): Action (estimated patients’ states) € {0,1}"

« p(y |29, F)p(x'?): True generative process of y and x(® (unknown)

): Set of possible functions that map [0,1] — {0,1}
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Bayes risk and optimal action

® Definition: Optimal action X* minimizes the Bayes risk

R[%; 2] = 2 z p(¥ 9, F)o(x©)R(x9,2(y); 1)
x(0) 'y

as x* = min R[%; 1]
x€e

y : Test results
e x(9 . patients’ true states
« X(y): Action (estimated patients’ states) € {0,1}"

« p(y |29, F)p(x'?): True generative process of y and x'® (unknown)

): Set of possible functions that map [0,1] — {0,1}

B Bayes risk is unobservable because we do not know p(y |9, F)g(x(®).
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Posterior risk in Bayesian optimal setting

® Definition: Posterior risk

R = ) P(xly, IR 2(); )

* P(x|y, F): Posterior distribution (known)
B Posterior risk is observable.
® Theorem:

In the Bayesian optimal setting, posterior risk coincides with

Bayes risk with expectation:
R[%; 2] = E,[RE(¥); D).

* E,[...]: expectation of y according to the true generative process
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Bayesian optimal setting

® Definition:
When the assumed model is equivalent to the true model p(y|x, F)p(x),
the setting is said to be Bayesian optimal.

flx, F)¢p(x) = p(y|x, He(x), vxe{01}", vye{01}M
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Bayesian optimal setting

® Definition:
When the assumed model is equivalent to the true model p(y|x, F)p(x),
the setting is said to be Bayesian optimal.

flx, F)¢x) =p(ylx, F)e(x), vxe{o1",vye{0o1}"
B Under the Bayesian optimal setting, the posterior probability is given by

p(ylx, F)o(x)
Z(y)

Substituting the posterior probability into the posterior risk yields

. 1
ERGOED] = ), P) ) 7ospOlx He(OR(x () )
y X

P(x|y,F) =

Z0) = ) pOlxPe@
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Bayesian optimal setting

® Definition:
When the assumed model is equivalent to the true model p(y|x, F)p(x),
the setting is said to be Bayesian optimal.

flx, F)¢x) =p(ylx, F)e(x), vxe{o1",vye{0o1}"
B Under the Bayesian optimal setting, the posterior probability is given by

p(ylx, F)p(x)
Z(y)

Substituting the posterior probability into the posterior risk yields

. 1
ERGOED] = ), P) ) 7ospOlx He(OR(x () )
y X

P(x]y, F) = Z0) = ) pOlxPe@

P(y) = Z(y)
= 2y 2xPY|x, F)p(x)R(x,X(y); 4) ...Bayes risk
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® Definition:
Action X** minimizes posterior risk under the Bayesian optimal setting

® Theorem:
X™" is the optimal action that minimizes Bayes risk.

M Proof :
By definition, R(Z(y); 1) = R(Z**(y); A) holds for any X(y).
Expectation with respect to y on both sides leads to R[X; ] = R[X**; 4].

« R(Z(y); A): Posterior risk under the Bayesian optimal setting
 R[x; A]: Bayes risk



Posterior risk minimization

® Definition:
Action X** minimizes posterior risk under the Bayesian optimal setting

® Theorem:
X™" is the optimal action that minimizes Bayes risk.

M Proof :
By definition, R(Z(y); 1) = R(Z**(y); A) holds for any X(y).

Expectation with respect to y on both sides leads to R[X; ] = R[X**; 4].

« R(Z(y); A): Posterior risk under the Bayesian optimal setting
 R[x; A]: Bayes risk

B Using posterior risk, which is observable, the optimal action is obtained.

26/50
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Cutoff-based estimator

® Theorem:

The optimal action is given by a cutoff-based function as

0 Arp
Aik = ]:[ ' [
x; (y) (pl(y) > I —0) ¢ Appe)

p;i: Posterior marginal probability of i-th patient under Bayesian optimal setting

* @:Prevalence

* App, ApN: Loss caused by false positives or negatives

[(a): Indicator function (1 if a is true, 0 otherwise)
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Cutoff-based estimator

® Theorem:

The optimal action is given by a cutoff-based function as

0 Arp
Aik = ]:[ ' [
x; (y) (pl(y) > I —0) ¢ Appe)

p;i: Posterior marginal probability of i-th patient under Bayesian optimal setting

* @:Prevalence

* App, ApN: Loss caused by false positives or negatives

[(a): Indicator function (1 if a is true, 0 otherwise)

B Proof: Minimization of the posterior risk under the constraint X; € {0,1}.

B Cutoff-based action is the optimal for the map [0,1] - {0,1}.
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Summary: optimal action

Pi
1—p;
0 1
Posterior distribution Posterior marginal probability
on {0,1}V for each patient

1 1
PGly,F) = oS fOIR PG pi= o5 ) xiflx FI6@)
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Summary: optimal action

Pi
Setting loss Agp and Ay
1—p;
) <)
0 App
=1{(p:
| \ (p‘(y) > Ten(1—0) + AFPQ)
0 1 e @:Prevalence
Posterior distribution Posterior marginal probability
on {0,1}V for each patient

1 1
PGxly,F) = 7o O IO pi= 7o > 0 fO1x B9
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Summary: optimal action

The appropriateness of marginalization as the diagnostic variable
is mathematically supported by the area under the curve.
Deftails are shown in arXiv:2110.10877.

Pi
Setting loss Agp and Ay
1—p; ,
l ) <)
0 App
\ I \ _H(p"(") >AFN(1—9)+AFp9)
C/ 0 1 e @:Prevalence
Posterior distribution Posterior marginal probability
on {0, 1}N for each patient

1
POy, F) = 5o FOIX PO pi= 705 31 f Olx )Ig()

Z(y



29/50
Unified view of well-known actions

0 App )

Optimal action: Afk:]l(->
ptimal action:  X; Pi AL —0) T Aenf



29/50
Unified view of well-known actions

9/11:.‘1:) )

Optimal action: Afk:]l(->
ptimal action:  X; Pi AL —0) T Aenf

4+ Maximum posterior marginal (MPM) estimator

* Defined by X; = (p; > 0.5)



29/50
Unified view of well-known actions

9/11:.‘1:) )

Optimal action: Afk:]l(->
ptimal action:  X; Pi AL —0) T Aenf

4+ Maximum posterior marginal (MPM) estimator
* Defined by X; = (p; > 0.5)

* Corresponds to Bayes risk minimization at the loss Agp = 1 — 0, Agy = 6



29/50
Unified view of well-known actions

9/11:.‘1:) )

Optimal action: Afk:]l(->
ptimal action:  X; P; AL —8) T Aend
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« When 6 < 0.5, the decrease of FP is preferred in the action.
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immediately leads to a decrease of FP rather than FN.
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Unified view of well-known actions

9/11:.‘1:) )

Optimal action: Afk:]l(->
ptimal action:  X; P; AL —8) T Aend

4+ Maximum posterior marginal (MPM) estimator
* Defined by X; = (p; > 0.5)
e Corresponds to Bayes risk minimization at the loss Agp = 1 — 0, Agy = 60

« When 6 < 0.5, the decrease of FP is preferred in the action.

! MPM estimator for group testing, which is efficient at small 9,
immediately leads to a decrease of FP rather than FN.

4 Youden index maximization: frequently used in medical statistics
e Defined by risk minimization at the loss Agpp = Agy = 0.5.

» Corresponds to the action X; = [(p; > ).
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where GT under the Bayesian optimal setting is not efficient.
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Usefulness of Bayesian optimal setting

B Bayesian optimal setting gives the upper bounds.

® The Bayesian optimal setting is not realistic.

* f(ylx, F)¢p(x) = p(y|x, F)p(x) does not generally hold.

® Bayesian optimal setting can describe possible optimal decision.

e Optimal action is given by the posterior marginal probability.
* Optimal action leads minimal Bayes risk.
® From the Bayesian optimal setting, we can obtain practical guides.

e There is no gain to introduce GT in the parameter region
where GT under the Bayesian optimal setting is not efficient.

® Inequalities bounded by the Bayesian optimal setting are equivalent to

those that hold on the Nishimori line in spin-glass theory.
See Iba, JPA (1999) & Nishimori (2001)
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Algorithm for Actual Inference
in Group Testing

Graphical representation and message passing

A Sakata, J Phys Soc Jpn 89, 084001 (2020)
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Approximation by message passing

e We know that

e}lpp )

() = H(pi(y) > T 0= 0) T A0

is the optimal in terms of Bayes risk minimization.

* The remaining problem is the calculation of

the posterior marginal probability p;(y).

* The cost for the exact computation is O (exp(N)).
—> Approximation: message passing on the graphical representation

(computational cost is a polynomial of N).

32/50
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Graphical representation: factor graph

e 2-body spin-glass model
P(o) x exp (.3 Ejijo'io'j)
(@.5)

= Hlpij(gi;ﬂj;]ij)

(@)



Graphical representation: factor graph

e 2-body spin-glass model

P(o) x exp(

B ElijUin

(&.))

)

= Hlpij(ai;ﬂj;]ij)

(@)

Jij

33/50



Graphical representation: factor graph

* 2-body spin-glass model * 3-body spin-glass model
P(o) o exp (ﬁ EfijUin) P(o) < exp (5 Z ]ijk0i0j0k>
(@.)) (i,).k)
= Hwij(ai,ﬁj;]ij) = 1_[ Vijic(90 9), 013 Jijte)
(i.J) (i,).k)
Jijk

33/50



Graphical representation: factor graph

2-body spin-glass model * 3-body spin-glass model
P(o) o exp (ﬁ EfijUin) P(o) < exp (5 Z ]ijk0i0j0k>
(@.)) (i,).k)
= Hwij(ai,ﬁj;]ij) = 1_[ Vijic(90 9), 013 Jijte)
(i.J) (i,).k)

Jijk

O : Variable node

: Factor node
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Graphical representation: factor graph

e 2-body spin-glass model
P(o) x exp (ﬁ Ejijo'io'j)
(@.5)

= Hlpij(gi;ﬂj;]ij)

(&.J)

Procedures for message passing:

* Product of factors Y

 Summing out the variables

* 3-body spin-glass model

P(o) « exp ([)’ z

(i’j’k)

Vijk(01, 05, 015 1)

(i.).k)

]ijk0i0j0k>

Jijk

O : Variable node

: Factor node

33/50
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* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph




34/50

Sum-product on factor graph

* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph
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* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph

P(X4|Y) = 2¢23(X2»X3iYz)zllhz(xpxziY1)
X, X4
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* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph

P(X4|Y) = 2 1/J34(X3»X4i Y3)¢(X3: h3) 2 1/J23(X2» X3; Yz) z 2%, (X1:X2i Y1)
X3 X X1
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph

P(X4|Y) = 2 1/J34(X3»X4i Y3)¢(X3: h3) 2 1/J23(X2» X3; Yz) z 2%, (X1:X2i Y1)
X3 X5 X1
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. ﬁlﬂ_)i(Xi): Message from u-th factor node to i-th variable node (input message)
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = Xx, 2x, 2x, P(X|Y)Pyr(X3) on the graph

P(X4|Y) — 2 1/J34(X3»X4i Y3)¢(X3: h3) 2 1/J23(X2» X3; Yz) z 2%, (X1:X2i Y1)
X3 X5 X1

~ mMq_- (X
m2—>3(X3) 1 2( 2)

. ﬁlﬂﬁi(Xi): Message from u-th factor node to i-th variable node (input message)
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = Xx, Xx, 2x, P(X]|Y)Pr(X3) on the graph

P(X4|Y) — Iz 1/J34(X3»X4i Y3)¢(X3: h3) 2 1/J23(X2» X3; Yz) z Y12 (X1:X2i Y1)
X3 X3 Xq

ot ﬁil—)Z(XZ)
iz—q(Xs) My-3(X3)

 f,,;(X;): Message from u-th factor node to i-th variable node (input message)

v Equivalent to the transfer matrix method
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Sum-product on factor graph

* Example: Calculate P(X5|Y) = Xy, -+ Xx, P(X[|Y) on the graph
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* Example: Calculate P(X5|Y) = Xy, -+ Xx, P(X[|Y) on the graph

P(Xs|Y) = 2 Y2 (X3, X4, X5; Y) 2 Y1(X1, X5, X5 Y1)
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Sum-product on factor graph

* Example: Calculate P(X5|Y) = Xy, - Xx, P(X|Y) on the graph

P(Xs|Y) = 2 Y2 (X3, X4, X5; Y) 2 Y1(X1, X5, X5 Y1)

X31X4 XerZ

— mZ—)S(XS) — ﬁil—)S(XS)
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Sum-product on factor graph

* Example: Calculate P(X5|Y) = Xy, -+ Xx, P(X[|Y) on the graph

P(Xs|Y) = 2 Y2 (X3, X4, X5; Y) 2 Y1(X1, X5, X5 Y1)

X31X4 XerZ

— ﬁiZ—)S(XS) — ﬁil—)S(XS)

B Marginal distribution is given by the product of the input messages.
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = X, 2x, 2.x, P(X|Y) on the graph

P(X4|Y) = z P3(X3,X4;Y3) z Yo (Xy, X35 Ys) Z P1(X1, X3;17)
Xa X, X,
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = X, 2x, 2.x, P(X|Y) on the graph

P(X4|Y) = z P3(X3,X4;Y3) z Yo (Xy, X35 Ys) z P1(X1, X3;17)
Xa X, X,

m2—>3 (XS) ﬁl1_>3 (XB)

7713_)4 (X4)
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Sum-product on factor graph

* Example: Calculate P(X4|Y) = X, 2x, 2.x, P(X|Y) on the graph

P(X4|Y) = z P3(X3,X4;Y3) z Yo (Xy, X35 Ys) z P1(X1, X3;17)
X, X,

ﬁiZ—)S (XB) ﬁl1_>3 (XB)

ms_,3(X3) g0 (Xs)

. ml-_w(Xl-): Message from i-th variable node to u-th factor node (output message)
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General form of message passing

* M (u): Set of variables in the interaction Y),

* G(i): Set of multi-body interactions that X; belongs to
A\ B:Setof the elements in A except B

1
My (Xi) = _Elpu(}qyu) 1_[ M) (X))

K2 X\X; JEM (p\i
1 -

mi—w(Xi) — 7. ¢(Xi) 1_[ my—>i(Xi)
v YEG(D)\V

Marginal distribution:

1
P:(X.) = — X.l_[ﬁi.x.
l( l) Zi(ﬁ( l) : y_)l( l) When the graph does not have any loops, the
veG() computation is exact.



Factor graph for group testing

Example: < Each patient belongs to 2 pools

e Each pool contains 3 patients

Factor node
(Test)

B
Pooling "‘; lf"
7>
X

matrix

Variable node
(Patients)

Prior distribution
(Prevalence)

Factor : ¢, = {pTPyM + (1 — pr)(l — yu)}T(x, Fﬂ) + {pryu + (1 - pr)(l — yﬂ)} (1 — T(x, Fu))

Y, Y,

S
X1 X3 X4 X; X6

HpEnEnEREEN

38/50
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o M (u): Set of the patients in u-th pool

* G(i): Set of pools that i-th patient belong to
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Meaning of messages in group testing

o M (u): Set of the patients in u-th pool

* G(i): Set of pools that i-th patient belong to

® Variables are binary, hence the messages can be

represented by Bernoulli variables.

* #it,.;(X;) = Bernoulli(8,_;), m;_,(X;) = Bernoulli(6;,)

® Meaning of messages

~

* 0, Probability of positive for i-th patient
after performing tests on u-th pool (/1 € g(i))

* 0;_,,: Probability of positive for i-th patient
before performing test on u-th pool (,u € Q(i))
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Message passing for group testing

~

- v Hveg(i)\u 9v—>i * 0:Prevalence
® Message from variable to factor : Hi—m = Z > @0 esls et Tndivde
I=U i-th patient
_ U , .
® Message from factor to variable: § . = —& M (w): Patients
H=1 /. in u-th pool
u—i

where U, =prpY, + 1 —pp)(1-Y,), W, =pepY,+ (1 —ppp)(1-Y,)

Zi—)ﬂ =0 1_[ 9~V—>i + (1 - 6) 1_[ (1 - év—n')

VEG(D\1 VEGD\K
Zu—>i = Uy + Uy <1 - 1_[ (1 - Hj—m)) + Wy 1_[ (1 - Hj—w)
JEM (u\i JEM (u\i
0 Hueg(i) Opi

® Marginal distribution: p; = = =~
© 0Ty Oumi + (1= O ey — Busd)



Error correction by group testing

e N=1000,M/N = 0.5,ptp = 0.95,pgp = 0.1, pool size of 10 for Bayesian optimal setting

 M: Number of tests (pools), N: Number of patients

1 0.16 —
N e -- O:MP | ;
0.9¢ ] 0.14 ' —: Theory Youo.ler? mc_:lex
Youden index D 0.12 | maximization |
08 | maximization
T e S« > S |
TP 07} 1 FP 008 | T |
MPM 0.06 | PFP |
0.6 i
estimator MPM |
0.04 /
estimator
0.5 F O: MP S
0.02
—: Theory D .
04 : ‘ ‘ ‘ L ‘ 0() & -w \ ! ! |
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1

Prevalence 6 Prevalence 6
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Error correction by group testing

e N=1000,M/N = 0.5,ptp = 0.95,pgp = 0.1, pool size of 10 for Bayesian optimal setting

 M: Number of tests (pools), N: Number of patients

1 0.16 — _
DTP eeDplmmmmmmmmmm LS B . O: MP ] * Youden index
0.9 L 0.14 F —. Theory Youo.ler? in(?lex maximization:
Youden index 0.12 F maximization . AFN — AFP = 1/2
08 | maximization
S e N <7 A ' * MPM estimator :
TP 0.7} 1 FP 008 | T : Akgn=1-10
Prp /1Fp =0
MPM 0.06 | .
0.6 .
estimator MPM
0.04 :
estimator
0.5 1 O: MP D
0.02
—: Theory D . M
0.4 ‘ ‘ : ‘ ‘ ‘ 0() —L \ ! | !
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1

Prevalence 6 Prevalence 6
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Error correction by group testing

e N=1000,M/N = 0.5,ptp = 0.95,pgp = 0.1, pool size of 10 for Bayesian optimal setting

 M: Number of tests (pools), N: Number of patients

1 T T T T T T 016

DTP e T D B O: MIS S ; e Youden index
0.9E L 0.14 F —. Theory Youo.ler? in(?lex maximization:
Youden index 0.12 F maximization AFN - AFP - 1/2
0.8 | maximization
O e Ny > A ¢ MPM estimator :
TP 07| FP 0.08 | T Apn=1-16
App = 0
VP 0.06 | PFP FP
0.6
estimator 0.04 | MPM B TP > prp:
estimator ,
0.5 F O: MP 0m | 5  FNis corrected by GT.
—: Theory D ' d
04 ! ! ! ! ! ! ! ! 0() == - ! ! ! ! . FP < pFP:
0.02 0.04 006 0.08 0.1 0.02 0.04 0.06 0.08 0.1

Prevalence 6 Prevalence 0 FP is corrected by GT.
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Error correction by group testing

e« N=1000,M/N = 0.5,ptp = 0.95, pgp = 0.1, pool size of 10 for Bayesian optimal setting

 M: Number of tests (pools), N: Number of patients

1 0.16 T T .
DTP S T DB N O): MP ; * Youden index
0.9 L 0.14 F —. Theory Youo.ler? in(?lex maximization:
Youden index 0.12 F maximization . AFN — AFP — 1/2
0.8 I maximization
O e N 5 A | * MPM estimator :
TP 07} | FP 008 | T . Akgn=1-10
App = 0
0.6 y
estimator 0.04 MPM B TP > prp:
estimator ,
0.5 | O: MP 0.02 Ma FN is corrected by GT.
—: Theory D '
04 I I I I I I OSD == - I I I I . FP < pFP:
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1 Epi dbv GT
Prevalence 6 Prevalence 0 is corrected by GT.

For the derivation of theoretical lines, see arXiv:2110.10877
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Comparison with two-stage testing

e N=1000,M/N = 0.5,0 = 0.05,pgp = 0, pool size of 10 for Bayesian optimal setting

1
0.95 T e Bayesian inference + optimal action outperform
0.9 two-stage testing with smaller number of tests
0.85 using appropriate cutoffs.
0.8 v In two-stage testing,
TP 0.75 the number of the 15t stage is 500,
0.7 and the total number of tests is about 700.
0.65 - MPM i
0.6 q 7]
055 I I I I I

0.7 0775 08 08 09 095 1

prp
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Correspondence with
replica method
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Replica method

* Analytical method for obtaining partition function and thermal

expectation in random systems such as spin-glass model

e Techniques for averaging over quenched randomness

e J: quenched randomness

.0
Eyllnz(D] - lim —E;[Z"()]  Z(J): partition function

n-0+ 0n
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* Analytical method for obtaining partition function and thermal

expectation in random systems such as spin-glass model

e Techniques for averaging over quenched randomness

e J: quenched randomness

.0
Eyllnz(D] - lim —E;[Z"()]  Z(J): partition function

n-0+ 0n

* In the case of group testing, quenched randomness corresponds to

patients’ true states x(® test results y, and pooling matrix F.

* We can obtain the typical performance of Bayesian group testing by replica
method.

etc.

Ey,F,x(O) | TP], Ey,F,x(O) [2 x; P(x|y, F)
X
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Message passing — Replica method

® Theorem:

The empirical distribution of messages at N — oo characterizes
the saddle point of the replica symmetric free energy.

 Empirical distributions :

N
py (6y) = hm Iy 2 xi(o)cS(Hi_,v — 6y) ...output messages from positive patients
i= 1veg(1)
py (6y) = hm LN = 0) Cz z xi(O)) 5(6;, — 6y) ...output messages from negative patients

i=1veg(i)

1 ~ ~ : . :
pi(0r) = lim M—KQZ z x26(8,,; — 6r) --.input messages to positive patients

N—->oo
v=1ieM(v)

1 ~ ~ . : :
Pz (0r) = lim M—KQZ z (1 — xl.(o)) 5(8,_; — ) ..input messages to negative patients

Nz v=1ieM(v)
Details are shown in arXiv:2110.10877.



46/50

Related Topics in Bayesian Group Testing
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Estimation of prevalence

Graphical representation of

prevalence estimation

Test results Y, Y, ® Prevalence is regarded as a

dynamical variable.

Patients’
states X1 X X3 Xy ® Prior distribution ¢(80) is regarded as
t interaction between X and 6.
Prior
distribution

Additional @ Hyperprior distribution (@) is introduced.

, messages
’  We set (@) as the beta distribution,
Prevalence e which is the conjugate of the
Bernoulli distribution.

Hyperprior
distribution

Details are shown in JPSJ 89, 084001 (2020).
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Adaptive pooling + message passing

® Adaptive group testing :

Sequentially design pools based on test results in previous steps

®From the viewpoint of active learning :

Take into account the pools that can output uncertain test results

* Uncertain = The posterior distribution cannot describe the test results

®Uncertainty measure: Posterior predictive distribution

p(Y'|Y,F,F) = 2f(Y’|X, F)P(X|Y,F)
X

F: Existing pools

 Y: Obtained test results
 F: Candidate new pool
Y': New test results

®New pool F* is given by F* = argmax S(Y, F, F)
F

where S(Y,F,F) = =Y,/ p(Y’

Y,F,F)Inp(Y’

Y,F,F)
Details are shown in PRE 103, 022110 (2021).



Dependence on number of tests

« N =1000,0 = 0.02, prp = 0.9, ppp = 0.05, Cutoff = 0.5

* ttimes adaptive testing on pools with size of 1 or 2 after 300 random tests

! 0.003
095 | Size 2 KX T "|‘
prp = 0.9 ——__ 0.0025 Random pooling
09 F=------ oy~ :- P ik Sk 2l kA s
—F + + + + + + 4 0'002 B
= iz d 7 0.0015 |
Q—i B ) m . B
& 038 o
‘ 001 |
0.75 | | 0.00
(17/? Random pooling . 0.0005 |
0.65 | 0L Yy, AWV
0.6 ‘ ‘ ‘ ‘ -0.0005 ‘ ‘ ‘ ‘
020 40 ¢ 60 80 100 0 20 40 60 80 100
t

Adaptive pooling reduces the number of tests required for TP > pp.
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Summary

* Bayesian inference for group testing

* A variant of the sparse estimation problem with discrete variables

e Consideration as a statistical physics model

* |dentification of patients’ states as a Bayesian decision problem

e Optimal action is given by the Bayesian optimal setting

e Approximate calculation of the posterior marginal probability
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Summary

e Bayesian inference for group testing

e A variant of the sparse estimation problem with discrete variables

e Consideration as a statistical physics model

* |dentification of patients’ states as a Bayesian decision problem

e Optimal action is given by the Bayesian optimal setting

e Approximate calculation of the posterior marginal probability

The discussion in this talk is not restricted to group testing.

Let’s map real problems to statistical physics and enjoy statistical inference!



