Statistical physics for Bayesian statistical decision theory: an application to group testing

Department of Statistical Inference & Mathematics / Research Center for Statistical Machine Learning

The Institute of Statistical Mathematics

Ayaka Sakata

Special thanks to Yoshiyuki Kabashima (UT) and Yukito Iba (ISM)

2/50

<u>Ayaka Sakata (</u>坂田綾香)

- Department of Statistical Inference & Mathematics, The Institute of Statistical Mathematics
 - **2008.3** Master's student, Graduate School of Arts & Sciences, University of Tokyo
 - Supervisor: Kunihiko Kaneko
 - - 2011.3 PhD student, Graduate School of Arts & Sciences, University of Tokyo
 - Supervisor: Koji Hukushima
 - 2014.3 JSPS Fellow (PD) @ Tokyo Tech (Kabashima Group)
 - **2015.3** SPDR @ RIKEN Theoretical Biology Group
 - **2020.3** Assistant Professor @ ISM
 - **2019.10** JST PRESTO Researcher
 - **2020.4** Associate Professor @ ISM

Outline

Introduction

- Statistical physics and Bayesian inference
 - Sparse estimation
- Group testing
 - Bayesian inference for group testing

Outline

Introduction

- Statistical physics and Bayesian inference
 - Sparse estimation
- Group testing
 - Bayesian inference for group testing
- Our contributions
 - Bayesian statistical decision for group testing
 - Make a diagnose as an optimal "action"
 - Algorithm for actual inference in group testing: message passing
 - Related topics in Bayesian group testing

Statistical Physics and Bayesian Inference Randomness and data

• Purpose: Model the generative process of given data y

• Purpose: Model the generative process of given data y

v is considered to be a realized value of a random variable.

• Purpose: Model the generative process of given data y

v is considered to be a realized value of a random variable.

• Assumption: The generative process is governed by a parameter x.

• Purpose: Model the generative process of given data y

v is considered to be a realized value of a random variable.

• Assumption: The generative process is governed by a parameter x.

 \square The distribution of x is the center for the modeling.

• Purpose: Model the generative process of given data y

v is considered to be a realized value of a random variable.

Assumption: The generative process is governed by a parameter x

 \square The distribution of x is the center for the modeling.

• Definition:

A Bayesian statistical model is made of a parametric statistical model (likelihood), f(y|x), and a prior distribution on the parameters, $\phi(x)$.

Purpose: Model the generative process of given data y

v is considered to be a realized value of a random variable.

Assumption: The generative process is governed by a parameter x

 \square The distribution of x is the center for the modeling.

• Definition:

A Bayesian statistical model is made of a parametric statistical model (likelihood), f(y|x), and a prior distribution on the parameters, $\phi(x)$.

$$P(\boldsymbol{x}|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{x})\phi(\boldsymbol{x})}{Z(\boldsymbol{y})}$$

$$P(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Z(\boldsymbol{y})} f(\boldsymbol{y}|\boldsymbol{x}) \phi(\boldsymbol{x})$$

Bayesian inference

- *y*: Data
- *x*: Model parameter

$$P(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Z(\boldsymbol{y})} f(\boldsymbol{y}|\boldsymbol{x}) \phi(\boldsymbol{x})$$

Bayesian inference

- *y*: Data
- *x*: Model parameter

$$P(\boldsymbol{x}|\boldsymbol{y}) = \frac{1}{Z(\boldsymbol{y})} f(\boldsymbol{y}|\boldsymbol{x}) \phi(\boldsymbol{x})$$

Statistical physics

- **y** : Quenched randomness
- *x* : Dynamical variables

- Point estimates = Thermal average
 - Posterior mean: •

•

Posterior mean:
$$\langle x_i \rangle = \sum_{x} x_i P(x|y)$$

Maximum a posteriori estimator : $\hat{x}_i = \max_{x_i} P(x|y)$... Ground state

Statistical physics as Bayesian inference

7/50

• References

- Mézard, Parisi, Virasoro, "Spin-glass theory and beyond" (1987)
- Iba, "The Nishimori Line and Bayesian statistics", J Phys A (1999)
- Nishimori, "Statistical Physics of Spin Glasses and Information Processing: An Introduction" (2001)
 - In Japanese, 西森「スピングラスと情報統計力学」(1999)
- Applications
 - Coding theory
 - Learning theory
 - Computational science
 - Signal processing
 - Statistics

Statistical physics as Bayesian inference

• References

- Mézard, Parisi, Virasoro, "Spin-glass theory and beyond" (1987)
- Iba, "The Nishimori Line and Bayesian statistics", J Phys A (1999)
- Nishimori, "Statistical Physics of Spin Glasses and Information Processing: An Introduction" (2001)
 - In Japanese, 西森「スピングラスと情報統計力学」(1999)

Applications

- Coding theory
- Learning theory
- Computational science
- Signal processing
- Statistics

Statistical-physics-based studies

- Phase transition in learning/inference
- Development of algorithms
- Analysis for algorithms

• Assumption: The model parameter is sparse.

- Assumption: The model parameter is sparse.
 - Sparse: There exist many zero components.

- Assumption: The model parameter is sparse.
 - Sparse: There exist many zero components.
 - The assumption is based on the empirical knowledge that natural data is sparse on some basis.

Reconstructed images using x%-top components on the discrete cosine basis [Lustig et al. (2007)]

- Assumption: The model parameter is sparse.
 - Sparse: There exist many zero components.
 - The assumption is based on the empirical knowledge that natural data is sparse on some basis.
 - Sparsity assumption reduces the effective dimension of variables to be estimated
 - Compressed sensing (signal processing), LASSO (statistics)

Reconstructed images using x%-top components on the discrete cosine basis [Lustig et al. (2007)]

A sparse estimation problem for discrete variables

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Perform tests on pools consist of mixed samples to

- Reduce the number of tests
- Correct test errors

Aldridge et al., "Group Testing: An Information Theory Perspective" (2019)

Dorfman, Ann. Math. Statist. (1943)

• First stage: Perform tests on random pools

Dorfman, Ann. Math. Statist. (1943)

11/50

• First stage: Perform tests on random pools

Dorfman, Ann. Math. Statist. (1943)

- First stage: Perform tests on random pools
- Second stage: Test patients in positive pools
Deterministic approach: Two-stage testing

- First stage: Perform tests on random pools
- Second stage: Test patients in positive pools
- Expected number of tests: $M + \{1 (1 \theta)^{N_p}\}MN_p$ (at minimum ~ $2\sqrt{\theta}N$)
 - *M*: Number of pools , θ : Prevalence (fraction of positive patients), N_p : Pool size
 - N: Number of patients $(N = N_p M)$

Dorfman, Ann. Math. Statist. (1943)

- Not robust to test errors
 - In deterministic approaches, the possibility of false test results is not considered.

- Not robust to test errors
 - In deterministic approaches, the possibility of false test results is not considered.
- In practice, testing cannot be error-free.

- Not robust to test errors
 - In deterministic approaches, the possibility of false test results is not considered.
- In practice, testing cannot be error-free.
 - Pre-analytical error: inappropriate sample transport, insufficient number of samples
 - Analytical error: calibration error, systematic error, random error
 - Post-analytical error: incorrect calculation

[Teshome et al., Journal of Multidisciplinary Healthcare (2020)]

- Not robust to test errors
 - In deterministic approaches, the possibility of false test results is not considered.
- In practice, testing cannot be error-free.
 - Pre-analytical error: inappropriate sample transport, insufficient number of samples
 - Analytical error: calibration error, systematic error, random error
 - Post-analytical error: incorrect calculation

[Teshome et al., Journal of Multidisciplinary Healthcare (2020)]

Modeling of test output considering both patients' states and test errors will be useful for robust inference.

Bayesian Inference for Group Testing Modeling of outputs of tests performed on pools

14/50

Basic idea

• Consider the test result $y \in \{0,1\}^M$ as observed data

• Consider the test result $y \in \{0,1\}^M$ as observed data

• y_{μ} : Test results of μ -th pool (1 = positive, 0 = negative)

• Consider the test result $y \in \{0,1\}^M$ as observed data

• y_{μ} : Test results of μ -th pool (1 = positive, 0 = negative)

→ The state of patients corresponds to the underlying model parameter $x^{(0)} \in \{0,1\}^N$.

• $x_i^{(0)}$: True state of *i*-th patient (1 = positive, 0 = negative)

• Consider the test result $\mathbf{y} \in \{0,1\}^M$ as observed data

• y_{μ} : Test results of μ -th pool (1 = positive, 0 = negative)

→ The state of patients corresponds to the underlying model parameter $x^{(0)} \in \{0,1\}^N$.

• $x_i^{(0)}$: True state of *i*-th patient (1 = positive, 0 = negative)

• Infer *x* from the test results *y*

= Model the generative process of y using x and set appropriate x

• Consider the test result $\mathbf{y} \in \{0,1\}^M$ as observed data

• y_{μ} : Test results of μ -th pool (1 = positive, 0 = negative)

→ The state of patients corresponds to the underlying model parameter $x^{(0)} \in \{0,1\}^N$.

• $x_i^{(0)}$: True state of *i*-th patient (1 = positive, 0 = negative)

- Infer *x* from the test results *y*
 - = Model the generative process of y using x and set appropriate x
 - The pooling matrix $\mathbf{F} \in \{0,1\}^{M \times N}$ is known.
 - $F_{\mu i} = 1$: *i*-th patient is in μ -th pool.
 - $F_{\mu i} = 0$: *i*-th patient is not in μ -th pool.

14/50

Basic idea

• Consider the test result $\mathbf{y} \in \{0,1\}^M$ as observed data

• y_{μ} : Test results of μ -th pool (1 = positive, 0 = negative)

→ The state of patients corresponds to the underlying model parameter $x^{(0)} \in \{0,1\}^N$.

• $x_i^{(0)}$: True state of *i*-th patient (1 = positive, 0 = negative)

- Infer *x* from the test results *y*
 - = Model the generative process of y using x and set appropriate x
 - The pooling matrix $F \in \{0,1\}^{M \times N}$ is known.
 - $F_{\mu i} = 1$: *i*-th patient is in μ -th pool.
 - $F_{\mu i} = 0$: *i*-th patient is not in μ -th pool.

There are two kinds of group testing.

- Non-adaptive GT: F is fixed in advance.
- Adaptive GT: F is sequentially designed.

- Number of tests (pools) *M* is smaller than number of patients *N*.
- Identification of *x* from *y* is an underdetermined problem.
 - Identification can be achieved if prevalence θ is sufficiently small.

- Number of tests (pools) *M* is smaller than number of patients *N*.
- Identification of *x* from *y* is an underdetermined problem.
 - Identification can be achieved if prevalence θ is sufficiently small.

Important model parameters • M/N • θ

NΛ

• Assumed generative process for test results *y* (likelihood)

$$f(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F}) = \prod_{\nu=1}^{M} \left[\{ p_{\text{TP}} y_{\nu} + (1-p_{\text{TP}})(1-y_{\nu}) \} T(\boldsymbol{x}, \boldsymbol{\widetilde{F}}_{\nu}) + \{ p_{\text{FP}} y_{\nu} + (1-p_{\text{FP}})(1-y_{\nu}) \} \left(1 - T(\boldsymbol{x}, \boldsymbol{\widetilde{F}}_{\nu}) \right) \right] \quad \cdot \quad \boldsymbol{\widetilde{F}}_{\nu}: \nu \text{-th row vector of } \boldsymbol{F}_{\nu}$$

• Assumed generative process for test results y (likelihood)

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F}) = \prod_{\nu=1}^{M} \left[\{ p_{\text{TP}} y_{\nu} + (1 - p_{\text{TP}})(1 - y_{\nu}) \} T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) + \{ p_{\text{FP}} y_{\nu} + (1 - p_{\text{FP}})(1 - y_{\nu}) \} \left(1 - T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) \right) \right]$$

• \widetilde{F}_{ν} : ν -th row vector of F

 $\blacksquare T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) = \vee_i F_{\nu i} x_i : \text{True state of } \nu \text{-th pool} (\vee: \text{logical sum})$

• Pools with at least one positive patient are positive

• Assumed generative process for test results y (likelihood)

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F}) = \prod_{\nu=1}^{M} \left[\{ p_{\text{TP}} y_{\nu} + (1 - p_{\text{TP}})(1 - y_{\nu}) \} T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) + \{ p_{\text{FP}} y_{\nu} + (1 - p_{\text{FP}})(1 - y_{\nu}) \} \left(1 - T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) \right) \right]$$

• \widetilde{F}_{ν} : ν -th row vector of F

• $T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) = \bigvee_i F_{\nu i} x_i$: True state of ν -th pool (V: logical sum)

• Pools with at least one positive patient are positive

Parameters

- p_{TP} : True positive probability
- p_{FP} : False positive probability

• Assumed generative process for test results y (likelihood)

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F}) = \prod_{\nu=1}^{M} \left[\{ p_{\text{TP}} y_{\nu} + (1 - p_{\text{TP}})(1 - y_{\nu}) \} T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) + \{ p_{\text{FP}} y_{\nu} + (1 - p_{\text{FP}})(1 - y_{\nu}) \} \left(1 - T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) \right) \right]$$

• \widetilde{F}_{ν} : ν -th row vector of **F**

X

• $T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) = \bigvee_i F_{\nu i} x_i$: True state of ν -th pool (V: logical sum)

- Pools with at least one positive patient are positive
- Parameters
 - p_{TP} : True positive probability
 - p_{FP} : False positive probability

• Assumed generative process for test results y (likelihood)

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F}) = \prod_{\nu=1}^{M} \left[\{ p_{\text{TP}} y_{\nu} + (1 - p_{\text{TP}})(1 - y_{\nu}) \} T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) + \{ p_{\text{FP}} y_{\nu} + (1 - p_{\text{FP}})(1 - y_{\nu}) \} \left(1 - T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) \right) \right]$$

 $\blacksquare T(\mathbf{x}, \widetilde{\mathbf{F}}_{\nu}) = \vee_i F_{\nu i} x_i : \text{True state of } \nu \text{-th pool} (\vee: \text{logical sum})$

• Pools with at least one positive patient are positive

Parameters

- p_{TP} : True positive probability
- p_{FP} : False positive probability

Assumption

• Tests are independent.

• \widetilde{F}_{ν} : ν -th row vector of **F**

X

• Prior distribution

$$\phi(\mathbf{x}) = \prod_{i=1}^{N} \{(1-\theta)(1-x_i) + \theta x_i\}, \quad \theta : \text{Prevalence}$$

• Prior distribution

$$\phi(\mathbf{x}) = \prod_{i=1}^{N} \{(1-\theta)(1-x_i) + \theta x_i\}, \quad \theta : \text{Prevalence}$$

- Assumptions
 - Independence between patients
 - Common prior probability

• Prior distribution

$$\phi(\mathbf{x}) = \prod_{i=1}^{N} \{(1-\theta)(1-x_i) + \theta x_i\}, \quad \theta : \text{Prevalence}$$

- Assumptions
 - Independence between patients
 - Common prior probability
- Posterior distribution

$$P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F}) = \frac{1}{Z(\boldsymbol{y})}f(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\phi(\boldsymbol{x}),$$

where
$$Z(\mathbf{y}) = \sum_{\mathbf{x}} f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x})$$

Problem caused by Bayesian inference
Problem caused by Bayesian inference

• Basis of inference is the posterior distribution.

Posterior distribution on $\{0,1\}^N$

$$P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F}) = \frac{1}{Z(\boldsymbol{y})}f(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\phi(\boldsymbol{x})$$

Problem caused by Bayesian inference

- Basis of inference is the posterior distribution.
 - ← Here, we focus on the posterior marginal probability $\rho_i \in [0,1]$.

Problem caused by Bayesian inference

18/50

- Basis of inference is the posterior distribution.
 - ← Here, we focus on the posterior marginal probability $\rho_i \in [0,1]$.

We need a map from $\rho_i \in [0,1]$ to $\hat{x}_i \in \{0,1\}$ to determine patients' states.

Bayesian Statistical Decision for group testing

Maximization of expected utility

Sakata & Kabashima, arXiv:2110.10877

(submitted to IEEE Transaction on Information Theory)

20/50

20/50

Decision-making

- ✦ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.

- ✤ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.
 - We need to choose one of the actions based on the posterior marginal probability ρ_i ..

- Action: a strategy that is being considered
 - ✦ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.
 - We need to choose one of the actions based on the posterior marginal probability ρ_i .
 - In medical statistics, ρ_i corresponds to the diagnostic variable.

- ✦ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.
 - We need to choose one of the actions based on the posterior marginal probability ρ_i .
 - In medical statistics, ρ_i corresponds to the diagnostic variable.
- Utility: a reward for the action

- ✦ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.
 - We need to choose one of the actions based on the posterior marginal probability ρ_i .
 - In medical statistics, ρ_i corresponds to the diagnostic variable.
- Utility: a reward for the action
- Utility function: total reward considering the patients population

• Action: a strategy that is being considered

- ✦ In the Bayesian group testing problem:
 - The possible actions are to make diagnoses as $\hat{x}_i = 1$ or $\hat{x}_i = 0$.
 - We need to choose one of the actions based on the posterior marginal probability ρ_i .
 - In medical statistics, ρ_i corresponds to the diagnostic variable.
- Utility: a reward for the action
- Utility function: total reward considering the patients population

Optimal action is defined as that which maximizes the expected utility.

Expectation is explained later.

Definition: Utility function for patient population

 $U = u_{\rm TP} TP + u_{\rm FN} FN + u_{\rm FP} FP + u_{\rm TN} TN$

Definition: Utility function for patient population

 $U = u_{\rm TP} TP + u_{\rm FN} FN + u_{\rm FP} FP + u_{\rm TN} TN$

• TP, FN = 1 – TP, FP, and TN = 1 – FP are functions of action \hat{x}_i and true parameter $x_i^{(0)}$.

$$\operatorname{TP}\left(x_{i}^{(0)}, \hat{x}_{i}(\boldsymbol{y})\right) = \frac{1}{N\theta} \sum_{i=1}^{N} x_{i}^{(0)} \hat{x}_{i}(\boldsymbol{y}), \qquad \operatorname{FP}\left(x_{i}^{(0)}, \hat{x}_{i}(\boldsymbol{y})\right) = \frac{1}{N(1-\theta)} \sum_{i=1}^{N} \left(1 - x_{i}^{(0)}\right) \hat{x}_{i}(\boldsymbol{y})$$

• TP + FN = 1 and FP + TN = 1, hence

$$U(\widehat{\mathbf{x}}, \mathbf{x}^{(0)}) = u_{\text{TP}}\text{TP} + u_{\text{FN}}\text{FN} + u_{\text{FP}}\text{FP} + u_{\text{TN}}\text{TN}$$
$$= (u_{\text{FN}} - u_{\text{TP}})\text{FN} + (u_{\text{FP}} - u_{\text{TN}})\text{FP} + u_{\text{TP}} + u_{\text{TN}}.$$

• TP + FN = 1 and FP + TN = 1, hence

$$U(\hat{\mathbf{x}}, \mathbf{x}^{(0)}) = u_{\text{TP}}\text{TP} + u_{\text{FN}}\text{FN} + u_{\text{FP}}\text{FP} + u_{\text{TN}}\text{TN}$$
$$= (u_{\text{FN}} - u_{\text{TP}})\text{FN} + (u_{\text{FP}} - u_{\text{TN}})\text{FP} + u_{\text{TP}} + u_{\text{TN}}.$$

• We define the risk function as

$$R(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}; \boldsymbol{\lambda}) = \lambda_{\text{FN}} \text{FN}(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}) + \lambda_{\text{FP}} \text{FP}(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}).$$

- Loss caused by false positives or negatives
 - $\lambda_{\rm FN} = u_{\rm TP} u_{\rm FN}~(>0)$... False negative loss
 - $\lambda_{\rm FP} = u_{\rm TN} u_{\rm FP} \ (> 0)$... False positive loss

• TP + FN = 1 and FP + TN = 1, hence

$$U(\hat{\mathbf{x}}, \mathbf{x}^{(0)}) = u_{\text{TP}}\text{TP} + u_{\text{FN}}\text{FN} + u_{\text{FP}}\text{FP} + u_{\text{TN}}\text{TN}$$
$$= (u_{\text{FN}} - u_{\text{TP}})\text{FN} + (u_{\text{FP}} - u_{\text{TN}})\text{FP} + u_{\text{TP}} + u_{\text{TN}}.$$

• We define the risk function as

$$R(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}; \boldsymbol{\lambda}) = \lambda_{\text{FN}} \text{FN}(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}) + \lambda_{\text{FP}} \text{FP}(\widehat{\boldsymbol{x}}, \boldsymbol{x}^{(0)}).$$

- Loss caused by false positives or negatives
 - $\lambda_{\rm FN} = u_{\rm TP} u_{\rm FN}~(>0)$... False negative loss
 - $\lambda_{\rm FP} = u_{\rm TN} u_{\rm FP}~(>0)$... False positive loss

• Maximization of the utility function = minimization of the risk function

Bayes risk and optimal action

Bayes risk and optimal action

• Definition: Optimal action \widehat{x}^* minimizes the Bayes risk

$$\overline{R}[\widehat{x}; \lambda] = \sum_{x^{(0)}} \sum_{y} p(y | x^{(0)}, F) \varphi(x^{(0)}) R(x^{(0)}, \widehat{x}(y); \lambda)$$

as
$$\widehat{x}^* = \min_{\widehat{x} \in \Omega} \overline{R}[\widehat{x}; \lambda]$$

- **y** : Test results
- $x^{(0)}$: Patients' true states
- $\widehat{\boldsymbol{x}}(\boldsymbol{y})$: Action (estimated patients' states) $\in \{0,1\}^N$
- $p(\mathbf{y} | \mathbf{x}^{(0)}, \mathbf{F}) \varphi(\mathbf{x}^{(0)})$: True generative process of \mathbf{y} and $\mathbf{x}^{(0)}$ (unknown)
- Ω : Set of possible functions that map $[0,1] \rightarrow \{0,1\}$

Bayes risk and optimal action

• Definition: Optimal action \widehat{x}^* minimizes the Bayes risk

$$\overline{R}[\widehat{\mathbf{x}}; \boldsymbol{\lambda}] = \sum_{\mathbf{x}^{(0)}} \sum_{\mathbf{y}} p(\mathbf{y} | \mathbf{x}^{(0)}, \mathbf{F}) \varphi(\mathbf{x}^{(0)}) R(\mathbf{x}^{(0)}, \widehat{\mathbf{x}}(\mathbf{y}); \boldsymbol{\lambda})$$

as
$$\widehat{\mathbf{x}}^* = \min_{\widehat{\mathbf{x}} \in \Omega} \overline{R}[\widehat{\mathbf{x}}; \boldsymbol{\lambda}]$$

- **y** : Test results
- $x^{(0)}$: Patients' true states
- $\widehat{x}(y)$: Action (estimated patients' states) $\in \{0,1\}^N$
- $p(\mathbf{y} | \mathbf{x}^{(0)}, \mathbf{F}) \varphi(\mathbf{x}^{(0)})$: True generative process of \mathbf{y} and $\mathbf{x}^{(0)}$ (unknown)
- Ω : Set of possible functions that map $[0,1] \rightarrow \{0,1\}$

Bayes risk is unobservable because we do not know $p(y | x^{(0)}, F) \varphi(x^{(0)})$.

• Definition: Posterior risk

$$\widehat{R}(\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda}) = \sum_{\boldsymbol{x}} P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F})R(\boldsymbol{x},\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda})$$

• $P(\mathbf{x}|\mathbf{y}, \mathbf{F})$: Posterior distribution (known)

• Definition: Posterior risk

$$\widehat{R}(\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda}) = \sum_{\boldsymbol{x}} P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F})R(\boldsymbol{x},\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda})$$

• *P*(*x*|*y*,*F*): Posterior distribution (known)

Posterior risk is observable.

24/50

• Definition: Posterior risk

$$\widehat{R}(\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda}) = \sum_{\boldsymbol{x}} P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F})R(\boldsymbol{x},\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda})$$

P(x|y, F): Posterior distribution (known)

Posterior risk is observable.

• Theorem:

In the Bayesian optimal setting, posterior risk coincides with Bayes risk with expectation:

$$\overline{R}[\widehat{\boldsymbol{x}};\boldsymbol{\lambda}] = E_{\boldsymbol{y}}[\widehat{R}(\widehat{\boldsymbol{x}}(\boldsymbol{y});\boldsymbol{\lambda})].$$

• $E_{y}[...]$: expectation of y according to the true generative process

• Definition:

When the assumed model is equivalent to the true model $p(y|x, F)\varphi(x)$, the setting is said to be Bayesian optimal.

 $f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}), \quad \forall \mathbf{x} \in \{0, 1\}^N, \forall \mathbf{y} \in \{0, 1\}^M$

• Definition:

When the assumed model is equivalent to the true model $p(y|x, F)\varphi(x)$, the setting is said to be Bayesian optimal.

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}), \quad \forall \mathbf{x} \in \{0, 1\}^N, \forall \mathbf{y} \in \{0, 1\}^M$$

Under the Bayesian optimal setting, the posterior probability is given by

$$P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F}) = \frac{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\varphi(\boldsymbol{x})}{Z(\boldsymbol{y})}, \qquad Z(\boldsymbol{y}) = \sum_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\varphi(\boldsymbol{x})$$

Substituting the posterior probability into the posterior risk yields

$$E_{\mathbf{y}}[\widehat{R}(\widehat{\mathbf{x}}(\mathbf{y});\boldsymbol{\lambda})] = \sum_{\mathbf{y}} P(\mathbf{y}) \sum_{\mathbf{x}} \frac{1}{Z(\mathbf{y})} p(\mathbf{y}|\mathbf{x}, \mathbf{F}) \varphi(\mathbf{x}) R(\mathbf{x}, \widehat{\mathbf{x}}(\mathbf{y}); \boldsymbol{\lambda})$$

• Definition:

When the assumed model is equivalent to the true model $p(y|x, F)\varphi(x)$, the setting is said to be Bayesian optimal.

$$f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}), \quad \forall \mathbf{x} \in \{0, 1\}^N, \forall \mathbf{y} \in \{0, 1\}^M$$

Under the Bayesian optimal setting, the posterior probability is given by

$$P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F}) = \frac{p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\varphi(\boldsymbol{x})}{Z(\boldsymbol{y})}, \qquad Z(\boldsymbol{y}) = \sum_{\boldsymbol{x}} p(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{F})\varphi(\boldsymbol{x})$$

Substituting the posterior probability into the posterior risk yields

$$E_{y}[\widehat{R}(\widehat{x}(y);\lambda)] = \sum_{y} P(y) \sum_{x} \frac{1}{Z(y)} p(y|x,F) \varphi(x) R(x,\widehat{x}(y);\lambda)$$
$$= \sum_{y} \sum_{x} p(y|x,F) \varphi(x) R(x,\widehat{x}(y);\lambda) \dots \text{Bayes risk}$$

• Definition:

Action \widehat{x}^{**} minimizes posterior risk under the Bayesian optimal setting

• Definition:

Action \widehat{x}^{**} minimizes posterior risk under the Bayesian optimal setting

• Theorem:

 \widehat{x}^{**} is the optimal action that minimizes Bayes risk.

• Definition:

Action \widehat{x}^{**} minimizes posterior risk under the Bayesian optimal setting

• Theorem:

 \widehat{x}^{**} is the optimal action that minimizes Bayes risk.

Proof :

By definition, $\widehat{R}(\widehat{x}(y); \lambda) \ge \widehat{R}(\widehat{x}^{**}(y); \lambda)$ holds for any $\widehat{x}(y)$. Expectation with respect to y on both sides leads to $\overline{R}[\widehat{x}; \lambda] \ge \overline{R}[\widehat{x}^{**}; \lambda]$.

- $\hat{R}(\hat{x}(y); \lambda)$: Posterior risk under the Bayesian optimal setting
- $\overline{R}[\widehat{x}; \lambda]$: Bayes risk
Posterior risk minimization

• Definition:

Action \widehat{x}^{**} minimizes posterior risk under the Bayesian optimal setting

• Theorem:

 \widehat{x}^{**} is the optimal action that minimizes Bayes risk.

Proof :

By definition, $\widehat{R}(\widehat{x}(y); \lambda) \ge \widehat{R}(\widehat{x}^{**}(y); \lambda)$ holds for any $\widehat{x}(y)$. Expectation with respect to y on both sides leads to $\overline{R}[\widehat{x}; \lambda] \ge \overline{R}[\widehat{x}^{**}; \lambda]$.

- $\hat{R}(\hat{x}(y); \lambda)$: Posterior risk under the Bayesian optimal setting
- $\overline{R}[\widehat{x}; \lambda]$: Bayes risk

Using posterior risk, which is observable, the optimal action is obtained.

• Theorem:

The optimal action is given by a cutoff-based function as

$$\hat{x}_i^*(\boldsymbol{y}) = \mathbb{I}\left(\rho_i(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right).$$

- ρ_i : Posterior marginal probability of *i*-th patient under Bayesian optimal setting
- θ : Prevalence
- $\lambda_{\rm FP}$, $\lambda_{\rm FN}$: Loss caused by false positives or negatives
- I(a): Indicator function (1 if *a* is true, 0 otherwise)

• Theorem:

The optimal action is given by a cutoff-based function as

$$\hat{x}_i^*(\boldsymbol{y}) = \mathbb{I}\left(\rho_i(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right).$$

- ρ_i : Posterior marginal probability of *i*-th patient under Bayesian optimal setting
- θ : Prevalence
- $\lambda_{\rm FP}$, $\lambda_{\rm FN}$: Loss caused by false positives or negatives
- I(a): Indicator function (1 if *a* is true, 0 otherwise)

Proof: Minimization of the posterior risk under the constraint $\hat{x}_i \in \{0,1\}$.

• Theorem:

The optimal action is given by a cutoff-based function as

$$\hat{x}_i^*(\boldsymbol{y}) = \mathbb{I}\left(\rho_i(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right).$$

- ρ_i : Posterior marginal probability of *i*-th patient under Bayesian optimal setting
- θ : Prevalence
- $\lambda_{\rm FP}$, $\lambda_{\rm FN}$: Loss caused by false positives or negatives
- I(a): Indicator function (1 if *a* is true, 0 otherwise)
- Proof: Minimization of the posterior risk under the constraint \$\hat{x}_i \in \{0,1\}\$.
 Cutoff-based action is the optimal for the map \$\[[0,1]] \rightarrow \{0,1\}\$.

Summary: optimal action

Summary: optimal action

Summary: optimal action

Optimal action:
$$\hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

Optimal action:
$$\hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

- ✦ Maximum posterior marginal (MPM) estimator
 - Defined by $\hat{x}_i = \mathbb{I}(\rho_i > 0.5)$

$$\text{Optimal action:} \quad \hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

- ✦ Maximum posterior marginal (MPM) estimator
 - Defined by $\hat{x}_i = \mathbb{I}(\rho_i > 0.5)$
 - Corresponds to Bayes risk minimization at the loss $\lambda_{\rm FP} = 1 \theta$, $\lambda_{\rm FN} = \theta$

$$\text{Optimal action:} \quad \hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

- ✦ Maximum posterior marginal (MPM) estimator
 - Defined by $\hat{x}_i = \mathbb{I}(\rho_i > 0.5)$
 - Corresponds to Bayes risk minimization at the loss $\lambda_{\rm FP}=1- heta,\;\lambda_{\rm FN}= heta$
 - When $\theta < 0.5$, the decrease of FP is preferred in the action.

$$\text{Optimal action:} \quad \hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

- ✦ Maximum posterior marginal (MPM) estimator
 - Defined by $\hat{x}_i = \mathbb{I}(\rho_i > 0.5)$
 - Corresponds to Bayes risk minimization at the loss $\lambda_{\rm FP}=1- heta,\;\lambda_{\rm FN}= heta$
 - When $\theta < 0.5$, the decrease of FP is preferred in the action.

I MPM estimator for group testing, which is efficient at small θ , immediately leads to a decrease of FP rather than FN.

$$\text{Optimal action:} \quad \hat{x}_i^* = \mathbb{I}\left(\rho_i > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

- ✦ Maximum posterior marginal (MPM) estimator
 - Defined by $\hat{x}_i = \mathbb{I}(\rho_i > 0.5)$
 - Corresponds to Bayes risk minimization at the loss $\lambda_{\rm FP}=1- heta,\;\lambda_{\rm FN}= heta$
 - When $\theta < 0.5$, the decrease of FP is preferred in the action.

I MPM estimator for group testing, which is efficient at small θ , immediately leads to a decrease of FP rather than FN.

- ✤ Youden index maximization: frequently used in medical statistics
 - Defined by risk minimization at the loss $\lambda_{FP} = \lambda_{FN} = 0.5$.
 - Corresponds to the action $\hat{x}_i = \mathbb{I}(\rho_i > \theta)$.

- The Bayesian optimal setting is not realistic.
 - $f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x})$ does not generally hold.

- The Bayesian optimal setting is not realistic.
 - $f(y|x, F)\phi(x) = p(y|x, F)\phi(x)$ does not generally hold.
- Bayesian optimal setting can describe possible optimal decision.
 - Optimal action is given by the posterior marginal probability.
 - Optimal action leads minimal Bayes risk.

- The Bayesian optimal setting is not realistic.
 - $f(y|x, F)\phi(x) = p(y|x, F)\phi(x)$ does not generally hold.
- Bayesian optimal setting can describe possible optimal decision.
 - Optimal action is given by the posterior marginal probability.
 - Optimal action leads minimal Bayes risk.
- From the Bayesian optimal setting, we can obtain practical guides.
 - There is no gain to introduce GT in the parameter region where GT under the Bayesian optimal setting is not efficient.

Bayesian optimal setting gives the upper bounds.

- The Bayesian optimal setting is not realistic.
 - $f(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x}) = p(\mathbf{y}|\mathbf{x}, \mathbf{F})\phi(\mathbf{x})$ does not generally hold.
- Bayesian optimal setting can describe possible optimal decision.
 - Optimal action is given by the posterior marginal probability.
 - Optimal action leads minimal Bayes risk.
- From the Bayesian optimal setting, we can obtain practical guides.
 - There is no gain to introduce GT in the parameter region where GT under the Bayesian optimal setting is not efficient.
- Inequalities bounded by the Bayesian optimal setting are equivalent to those that hold on the Nishimori line in spin-glass theory.

See Iba, JPA (1999) & Nishimori (2001)

30/50

Algorithm for Actual Inference in Group Testing

Graphical representation and message passing

A Sakata, J Phys Soc Jpn 89, 084001 (2020)

• We know that

$$\hat{x}_{i}^{*}(\boldsymbol{y}) = \mathbb{I}\left(\rho_{i}(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

is the optimal in terms of Bayes risk minimization.

• We know that

$$\hat{x}_{i}^{*}(\boldsymbol{y}) = \mathbb{I}\left(\rho_{i}(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

is the optimal in terms of Bayes risk minimization.

• The remaining problem is the calculation of the posterior marginal probability $\rho_i(\mathbf{y})$.

• We know that

$$\hat{x}_{i}^{*}(\boldsymbol{y}) = \mathbb{I}\left(\rho_{i}(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

is the optimal in terms of Bayes risk minimization.

- The remaining problem is the calculation of the posterior marginal probability $\rho_i(\mathbf{y})$.
- The cost for the exact computation is $O(\exp(N))$.

• We know that

$$\hat{x}_{i}^{*}(\boldsymbol{y}) = \mathbb{I}\left(\rho_{i}(\boldsymbol{y}) > \frac{\theta \lambda_{\text{FP}}}{\lambda_{\text{FN}}(1-\theta) + \lambda_{\text{FP}}\theta}\right)$$

is the optimal in terms of Bayes risk minimization.

- The remaining problem is the calculation of the posterior marginal probability $\rho_i(\mathbf{y})$.
- The cost for the exact computation is $O(\exp(N))$.
 - \rightarrow Approximation: message passing on the graphical representation (computational cost is a polynomial of N).

• 2-body spin-glass model

$$P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j)} J_{ij}\sigma_i\sigma_j\right)$$
$$\equiv \prod_{(i,j)} \psi_{ij}(\sigma_i,\sigma_j;J_{ij})$$

• 2-body spin-glass model

$$P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j)} J_{ij}\sigma_i\sigma_j\right)$$
$$\equiv \prod_{(i,j)} \psi_{ij}(\sigma_i,\sigma_j;J_{ij})$$
$$\underbrace{\sigma_i \quad J_{ij} \quad \sigma_j}$$

• 2-body spin-glass model

$$P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j)} J_{ij}\sigma_i\sigma_j\right)$$
$$\equiv \prod_{(i,j)} \psi_{ij}(\sigma_i,\sigma_j;J_{ij})$$
$$\underbrace{\boldsymbol{\sigma}_i \qquad J_{ij} \qquad \boldsymbol{\sigma}_j}$$

• 3-body spin-glass model

$$P(\sigma) \propto \exp\left(\beta \sum_{(i,j,k)} J_{ijk} \sigma_i \sigma_j \sigma_k\right)$$

$$\equiv \prod_{(i,j,k)} \psi_{ijk} (\sigma_i, \sigma_j, \sigma_k; J_{ijk})$$

$$\overbrace{\sigma_i}$$

$$\overbrace{J_{ijk}}$$

$$\overbrace{\sigma_k}$$

• 2-body spin-glass model

$$P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j)} J_{ij}\sigma_i\sigma_j\right)$$
$$\equiv \prod_{(i,j)} \psi_{ij}(\sigma_i,\sigma_j;J_{ij})$$
$$\underbrace{\sigma_i \quad J_{ij} \quad \sigma_j}$$

3-body spin-glass model $P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j,k)} J_{ijk} \sigma_i \sigma_j \sigma_k\right)$ $\equiv \prod_{(i,j,k)} \psi_{ijk} (\sigma_i, \sigma_j, \sigma_k; J_{ijk})$ σ_i J_{ijk} σ_i σ_k

33/50

• 2-body spin-glass model

$$P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j)} J_{ij}\sigma_i\sigma_j\right)$$
$$\equiv \prod_{(i,j)} \psi_{ij}(\sigma_i,\sigma_j;J_{ij})$$
$$\underbrace{\sigma_i \quad J_{ij} \quad \sigma_j}$$

Procedures for message passing:

- Product of factors ψ
- Summing out the variables

3-body spin-glass model $P(\boldsymbol{\sigma}) \propto \exp\left(\beta \sum_{(i,j,k)} J_{ijk} \sigma_i \sigma_j \sigma_k\right)$ $\equiv \prod_{(i,j,k)} \psi_{ijk}(\sigma_i, \sigma_j, \sigma_k; J_{ijk})$ σ_i J_{ijk} σ_i σ_k

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y}) P_h(X_3)$ on the graph

• Example: Calculate $P(X_4|Y) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(X|Y) P_h(X_3)$ on the graph

 $P(X_4|\mathbf{Y}) = \sum_{X_3} \psi_{34}(X_3, X_4; Y_3) \phi(X_3, h_3) \sum_{X_2} \psi_{23}(X_3, X_3; Y_3) \sum_{X_1} \psi_{12}(X_1, X_2; Y_1)$

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y}) P_h(X_3)$ on the graph

 $P(X_4|\mathbf{Y}) = \sum_{X_3} \psi_{34}(X_3, X_4; Y_3) \phi(X_3, h_3) \sum_{X_2} \psi_{23}(X_2, X_3; Y_2) \sum_{X_1} \psi_{12}(X_1, X_2; Y_1)$

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y}) P_h(X_3)$ on the graph

$$P(X_4|\mathbf{Y}) = \sum_{X_3} \psi_{34}(X_3, X_4; Y_3) \phi(X_3, h_3) \sum_{X_2} \psi_{23}(X_2, X_3; Y_2) \sum_{X_1} \psi_{12}(X_1, X_2; Y_1)$$

• Example: Calculate $P(X_4|Y) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(X|Y) P_h(X_3)$ on the graph

$$P(X_4|\mathbf{Y}) = \sum_{X_3} \psi_{34}(X_3, X_4; Y_3) \phi(X_3, h_3) \sum_{X_2} \psi_{23}(X_2, X_3; Y_2) \sum_{X_1} \psi_{12}(X_1, X_2; Y_1)$$
$$\widetilde{m}_{1 \to 2}(X_2)$$

• $\widetilde{m}_{\mu \to i}(X_i)$: Message from μ -th factor node to *i*-th variable node (input message)

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y}) P_h(X_3)$ on the graph

• $\widetilde{m}_{\mu \to i}(X_i)$: Message from μ -th factor node to *i*-th variable node (input message)
• Example: Calculate $P(X_4|Y) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(X|Y) P_h(X_3)$ on the graph

• $\widetilde{m}_{\mu \to i}(X_i)$: Message from μ -th factor node to *i*-th variable node (input message) \checkmark Equivalent to the transfer matrix method

• Example: Calculate $P(X_5|Y) = \sum_{X_4} \cdots \sum_{X_1} P(X|Y)$ on the graph

• Example: Calculate $P(X_5|Y) = \sum_{X_4} \cdots \sum_{X_1} P(X|Y)$ on the graph

• Example: Calculate $P(X_5|Y) = \sum_{X_4} \cdots \sum_{X_1} P(X|Y)$ on the graph

• Example: Calculate $P(X_5|Y) = \sum_{X_4} \cdots \sum_{X_1} P(X|Y)$ on the graph

Marginal distribution is given by the product of the input messages.

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y})$ on the graph

$$P(X_4|\mathbf{Y}) = \sum_{X_3} \psi_3(X_3, X_4; Y_3) \sum_{X_2} \psi_2(X_2, X_3; Y_2) \sum_{X_1} \psi_1(X_1, X_3; Y_1)$$

• Example: Calculate $P(X_4|Y) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(X|Y)$ on the graph

36/50

• Example: Calculate $P(X_4|\mathbf{Y}) = \sum_{X_3} \sum_{X_2} \sum_{X_1} P(\mathbf{X}|\mathbf{Y})$ on the graph

• $m_{i \to \mu}(X_i)$: Message from *i*-th variable node to μ -th factor node (output message)

General form of message passing

- $\mathcal{M}(\mu)$: Set of variables in the interaction Y_{μ}
- G(i): Set of multi-body interactions that X_i belongs to
- $A \setminus B$: Set of the elements in A except B

$$\widetilde{m}_{\mu \to i}(X_i) = \frac{1}{\widetilde{Z}_{\mu \to i}} \sum_{X \setminus X_i} \psi_{\mu}(X|Y_{\mu}) \prod_{j \in \mathcal{M}(\mu) \setminus i} m_{j \to \mu}(X_j)$$
$$m_{i \to \nu}(X_i) = \frac{1}{Z_{i \to \nu}} \phi(X_i) \prod_{\gamma \in \mathcal{G}(i) \setminus \nu} \widetilde{m}_{\gamma \to i}(X_i)$$

Marginal distribution:

$$P_i(X_i) = \frac{1}{Z_i} \phi(X_i) \prod_{\gamma \in \mathcal{G}(i)} \widetilde{m}_{\gamma \to i}(X_i)$$

When the graph does not have any loops, the computation is exact.

$$\begin{array}{c}
 m_{* \rightarrow \nu} \\
 \widetilde{m}_{\mu \rightarrow i} \\
 X_{i} \\
 Y_{\mu} \\
 X_{N} \\
 X_{N}
\end{array}$$

Factor graph for group testing

- Example: Each patient belongs to 2 pools
 - Each pool contains 3 patients

Factor: $\psi_{\mu} = \{p_{\text{TP}}y_{\mu} + (1 - p_{\text{TP}})(1 - y_{\mu})\}T(\mathbf{x}, \widetilde{\mathbf{F}}_{\mu}) + \{p_{\text{FP}}y_{\mu} + (1 - p_{\text{FP}})(1 - y_{\mu})\}(1 - T(\mathbf{x}, \widetilde{\mathbf{F}}_{\mu}))$

Meaning of messages in group testing

- $\mathcal{M}(\mu)$: Set of the patients in μ -th pool
- G(i): Set of pools that *i*-th patient belong to

39/50

Meaning of messages in group testing

- $\mathcal{M}(\mu)$: Set of the patients in μ -th pool
- G(i): Set of pools that *i*-th patient belong to
- Variables are binary, hence the messages can be represented by Bernoulli variables.
 - $\widetilde{m}_{\mu \to i}(X_i) = \text{Bernoulli}(\widetilde{\theta}_{\mu \to i}), \ m_{i \to \mu}(X_i) = \text{Bernoulli}(\theta_{i \to \mu})$

Meaning of messages in group testing

- $\mathcal{M}(\mu)$: Set of the patients in μ -th pool
- G(i): Set of pools that *i*-th patient belong to
- Variables are binary, hence the messages can be represented by Bernoulli variables.
 - $\widetilde{m}_{\mu \to i}(X_i) = \text{Bernoulli}(\widetilde{\theta}_{\mu \to i}), \ m_{i \to \mu}(X_i) = \text{Bernoulli}(\theta_{i \to \mu})$
- Meaning of messages
 - $\tilde{\theta}_{\mu \to i}$: Probability of positive for *i*-th patient after performing tests on μ -th pool ($\mu \in \mathcal{G}(i)$)
 - $\theta_{i \to \mu}$: Probability of positive for *i*-th patient before performing test on μ -th pool ($\mu \in \mathcal{G}(i)$)

Message passing for group testing

- Message from variable to factor :
- Message from factor to variable :

M

$$\theta_{i \to \mu} = \frac{\theta \prod_{\nu \in \mathcal{G}(i) \setminus \mu} \tilde{\theta}_{\nu \to i}}{Z_{i \to \mu}}$$
$$\tilde{\theta}_{\mu \to i} = \frac{U_{\mu}}{\tilde{Z}_{\mu \to i}}$$

- θ : Prevalence
- G(i): Pools that include
 i-th patient
- $\mathcal{M}(\mu)$: Patients in μ -th pool

where
$$U_{\mu} = p_{\mathrm{TP}}Y_{\mu} + (1 - p_{\mathrm{TP}})(1 - Y_{\mu}),$$
 $W_{\mu} = p_{\mathrm{FP}}Y_{\mu} + (1 - p_{\mathrm{FP}})(1 - Y_{\mu})$
 $Z_{i \to \mu} = \theta \prod_{\nu \in \mathcal{G}(i) \setminus \mu} \tilde{\theta}_{\nu \to i} + (1 - \theta) \prod_{\nu \in \mathcal{G}(i) \setminus \mu} (1 - \tilde{\theta}_{\nu \to i})$
 $\tilde{Z}_{\mu \to i} = U_{\mu} + U_{\mu} \left(1 - \prod_{j \in \mathcal{M}(\mu) \setminus i} (1 - \theta_{j \to \mu})\right) + W_{\mu} \prod_{j \in \mathcal{M}(\mu) \setminus i} (1 - \theta_{j \to \mu})$
arginal distribution : $\rho_{i} = \frac{\theta \prod_{\mu \in \mathcal{G}(i)} \tilde{\theta}_{\mu \to i}}{\theta \prod_{\mu \in \mathcal{G}(i)} \tilde{\theta}_{\mu \to i} + (1 - \theta) \prod_{\mu \in \mathcal{G}(i)} (1 - \tilde{\theta}_{\mu \to i})}$

• $N = 1000, M/N = 0.5, p_{TP} = 0.95, p_{FP} = 0.1$, pool size of 10 for Bayesian optimal setting

41/50

• *M*: Number of tests (pools), *N*: Number of patients

• $N = 1000, M/N = 0.5, p_{TP} = 0.95, p_{FP} = 0.1$, pool size of 10 for Bayesian optimal setting

41/50

• *M*: Number of tests (pools), *N*: Number of patients

- $N = 1000, M/N = 0.5, p_{TP} = 0.95, p_{FP} = 0.1$, pool size of 10 for Bayesian optimal setting
 - *M*: Number of tests (pools), *N*: Number of patients

- $N = 1000, M/N = 0.5, p_{TP} = 0.95, p_{FP} = 0.1$, pool size of 10 for Bayesian optimal setting
 - *M*: Number of tests (pools), *N*: Number of patients

For the derivation of theoretical lines, see arXiv:2110.10877

41/50

Comparison with two-stage testing

• $N = 1000, M/N = 0.5, \theta = 0.05, p_{FP} = 0$, pool size of 10 for Bayesian optimal setting

- Bayesian inference + optimal action outperform two-stage testing with smaller number of tests using appropriate cutoffs.
 - ✓ In two-stage testing, the number of the 1st stage is 500, and the total number of tests is about 700.

Correspondence with replica method

Replica method

- Analytical method for obtaining partition function and thermal expectation in random systems such as spin-glass model
 - Techniques for averaging over quenched randomness

$$E_{\boldsymbol{J}}[\ln Z(\boldsymbol{J})] \to \lim_{n \to 0+} \frac{\partial}{\partial n} E_{\boldsymbol{J}}[Z^n(\boldsymbol{J})]$$

- *J*: quenched randomness
- *Z*(*J*): partition function

Replica method

- Analytical method for obtaining partition function and thermal expectation in random systems such as spin-glass model
 - Techniques for averaging over quenched randomness

$$E_{\boldsymbol{J}}[\ln Z(\boldsymbol{J})] \to \lim_{n \to 0+} \frac{\partial}{\partial n} E_{\boldsymbol{J}}[Z^n(\boldsymbol{J})]$$

- *J*: quenched randomness
- *Z*(*J*): partition function
- In the case of group testing, quenched randomness corresponds to patients' true states $x^{(0)}$, test results y, and pooling matrix F.
- We can obtain the typical performance of Bayesian group testing by replica method.

$$E_{\boldsymbol{y},\boldsymbol{F},\boldsymbol{x}^{(0)}}[\text{TP}], \quad E_{\boldsymbol{y},\boldsymbol{F},\boldsymbol{x}^{(0)}}\left[\sum_{\boldsymbol{x}} x_i P(\boldsymbol{x}|\boldsymbol{y},\boldsymbol{F})\right]$$
 etc.

$\textbf{Message passing} \rightarrow \textbf{Replica method}$

• Theorem:

The empirical distribution of messages at $N \rightarrow \infty$ characterizes the saddle point of the replica symmetric free energy.

• Empirical distributions :

 $\hat{p}_V^+(\theta_V) \equiv \lim_{N \to \infty} \frac{1}{N\theta C} \sum_{i=1}^N \sum_{i=1}^N x_i^{(0)} \delta(\theta_{i \to \nu} - \theta_V)$...output messages from positive patients $\hat{p}_V^-(\theta_V) \equiv \lim_{N \to \infty} \frac{1}{N(1-\theta)C} \sum_{i=1}^N \sum_{v \in C(i)} \left(1 - x_i^{(0)}\right) \delta(\theta_{i \to v} - \theta_V) \quad \dots \text{output messages from negative patients}$ $\hat{p}_F^+(\tilde{\theta}_F) \equiv \lim_{N \to \infty} \frac{1}{MK\theta} \sum_{i=1}^{M} \sum_{i=1}^{M} \sum_{i=1}^{M} x_i^{(0)} \delta(\tilde{\theta}_{\nu \to i} - \tilde{\theta}_F) \quad \dots \text{ input messages to positive patients}$ $\hat{p}_F^-(\tilde{\theta}_F) \equiv \lim_{N \to \infty} \frac{1}{MK\theta} \sum_{\nu=1}^M \sum_{i \in \mathcal{M}(\nu)} \left(1 - x_i^{(0)}\right) \delta(\tilde{\theta}_{\nu \to i} - \tilde{\theta}_F) \text{ ... input messages to negative patients}$

Details are shown in arXiv:2110.10877.

Related Topics in Bayesian Group Testing

Estimation of prevalence

Graphical representation of

prevalence estimation

- Prevalence is regarded as a dynamical variable.
- Prior distribution $\phi(\theta)$ is regarded as interaction between **X** and θ .
- Hyperprior distribution $\pi(\theta)$ is introduced.
 - We set $\pi(\theta)$ as the beta distribution, which is the conjugate of the Bernoulli distribution.

Details are shown in JPSJ 89, 084001 (2020).

Adaptive pooling + message passing

•Adaptive group testing :

Sequentially design pools based on test results in previous steps

• From the viewpoint of active learning :

Take into account the pools that can output uncertain test results

• Uncertain = The posterior distribution cannot describe the test results

Uncertainty measure: Posterior predictive distribution

$$p(Y'|\mathbf{Y}, \mathbf{F}, \widetilde{\mathbf{F}}) = \sum_{X} f(Y'|\mathbf{X}, \widetilde{\mathbf{F}}) P(\mathbf{X}|\mathbf{Y}, \mathbf{F})$$

•New pool \widetilde{F}^* is given by $\widetilde{F}^* = \operatorname*{argmax}_F \mathcal{S}(Y, F, \widetilde{F})$

where
$$\mathcal{S}(\boldsymbol{Y}, \boldsymbol{F}, \widetilde{\boldsymbol{F}}) = -\sum_{Y'} p(Y' | \boldsymbol{Y}, \boldsymbol{F}, \widetilde{\boldsymbol{F}}) \ln p(Y' | \boldsymbol{Y}, \boldsymbol{F}, \widetilde{\boldsymbol{F}})$$

- **F**: Existing pools
- Y: Obtained test results
- \widetilde{F} : Candidate new pool
- Y': New test results

Details are shown in PRE 103, 022110 (2021).

Dependence on number of tests

- $N = 1000, \theta = 0.02, p_{\text{TP}} = 0.9, p_{\text{FP}} = 0.05$, Cutoff = 0.5
- *t* times adaptive testing on pools with size of 1 or 2 after 300 random tests

Adaptive pooling reduces the number of tests required for $TP > p_{TP}$.

Summary

- Bayesian inference for group testing
 - A variant of the sparse estimation problem with discrete variables

50/50

- Consideration as a statistical physics model
- Identification of patients' states as a Bayesian decision problem
 - Optimal action is given by the Bayesian optimal setting
- Approximate calculation of the posterior marginal probability

Summary

- Bayesian inference for group testing
 - A variant of the sparse estimation problem with discrete variables
 - Consideration as a statistical physics model
- Identification of patients' states as a Bayesian decision problem
 - Optimal action is given by the Bayesian optimal setting
- Approximate calculation of the posterior marginal probability

The discussion in this talk is not restricted to group testing.

