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Statistical Physics and Bayesian Inference
Randomness and data
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Statistical physics as Bayesian inference
l References

• Mézard, Parisi, Virasoro, “Spin-glass theory and beyond” (1987)

• Iba, “The Nishimori Line and Bayesian statistics”, J Phys A (1999) 

• Nishimori,  “Statistical Physics of Spin Glasses and Information Processing: 
An Introduction” (2001)

• In Japanese, ⻄森「スピングラスと情報統計⼒学」(1999)

l Applications

• Coding theory

• Learning theory

• Computational science

• Signal processing

• Statistics
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■ Phase transition in learning/inference 
■ Development of algorithms
■ Analysis for algorithms

Statistical-physics-based studies
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Sparse estimation
l Assumption: The model parameter is sparse.

• Sparse: There exist many zero components.

• The assumption is based on the empirical knowledge that 
natural data is sparse on some basis.

• Sparsity assumption reduces the effective dimension of variables to be estimated

• Compressed sensing (signal processing),  LASSO (statistics)

5%

10%

20%

100%

Reconstructed images 
using $%-top components on 
the discrete cosine basis
[Lustig et al. (2007)]
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Group Testing
A sparse estimation problem for discrete variables
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Group testing
Perform tests on pools consist of mixed samples to

• Reduce the number of tests

• Correct test errors

Aldridge et al., “Group Testing: An Information Theory Perspective” (2019)

10/50

PosiEve Negative

Patients

Positive

Mixing of 
samples

Tests on 

pools

Inference

Assumption:

The number of 
positive patients is 
sufficiently small.

Sparsity 

assump7on

=



Deterministic approach: Two-stage testing

Dorfman, Ann. Math. Statist. (1943)

11/50



• First stage: Perform tests on random pools 

Deterministic approach: Two-stage testing

Dorfman, Ann. Math. Statist. (1943)

11/50



Deterministic approach: Two-stage testing

Negative Positive NegativePositive

• First stage: Perform tests on random pools 

Dorfman, Ann. Math. Statist. (1943)

11/50



Deterministic approach: Two-stage testing

Negative Positive NegativePositive

PN NN P N N P

• First stage: Perform tests on random pools 

• Second stage: Test patients in positive pools

Dorfman, Ann. Math. Statist. (1943)

11/50



Deterministic approach: Two-stage testing

• First stage: Perform tests on random pools 

• Second stage: Test patients in positive pools

• Expected number of tests: , + 1 − 1 − / -! ,0. (at minimum ∼ 2 23)

Negative Positive NegativePositive

PN NN P N N P

• 4: Number of pools , 2: Prevalence (fracEon of posiEve paEents), 3$: Pool size

Dorfman, Ann. Math. Statist. (1943)• 3: Number of patients (3 = 3$4)
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Weakness of deterministic approaches
l Not robust to test errors

• In deterministic approaches, the possibility of false test results is 
not considered.

n In practice, testing cannot be error-free.

• Pre-analytical error: inappropriate sample transport, insufficient number of samples

• Analytical error: calibration error, systematic error, random error

• Post-analytical error: incorrect calculation

u Modeling of test output considering both patients‘ states 

and test errors will be useful for robust inference.

[Teshome et al., Journal of Multidisciplinary Healthcare (2020)]
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Bayesian Inference for Group Testing
Modeling of outputs of tests performed on pools 
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There are two kinds of group testing.

• Non-adaptive GT: 1 is fixed in advance. 
• Adaptive GT: 1 is sequentially designed. 
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+ GB/.5* + 1 − B/. 1 − 5* 1 − E ", F:*

n E ", F:* = ∨! =*!$!：True state of H-th pool (∨: logical sum)

• Pools with at least one positive patient are positive

• B-.：True positive probability

• B/.：False positive probability

n Assumption

n Parameters

• Tests are independent.

5* = 1 or 0

E =∨! =*!$!

"

• F:*: H-th row vector of :
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Problem caused by Bayesian inference
• Basis of inference is the posterior distribution.

✦ Here, we focus on the posterior marginal probability N! ∈ 0,1 .

We need a map from 42 ∈ 0,1 to 562 ∈ {0,1} to determine patients’ states.
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Determine 
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？
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Bayesian Statistical Decision
for group testing
Maximization of expected utility

Sakata & Kabashima, arXiv:2110.10877
(submitted to IEEE Transaction on Information Theory)
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Decision-making 
l Action: a strategy that is being considered

✦ In the Bayesian group testing problem:

• The possible actions are to make diagnoses as 562 = 1 or 562 = 0. 

• We need to choose one of the actions based on 

the posterior marginal probability 42.

• In medical statistics, 42 corresponds to the diagnostic variable.

l Utility: a reward for the action 

l Utility function: total reward considering the patients population

Optimal action is defined as that which maximizes the expected utility.

Expectation is explained later.
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Target hypothesis
(Patient’s true state)

Action
(Diagnosis)

Positive Negative
Positive O-. O/.
Negative O/0 O-0

• O-. > O/0
• O-0 > O/.

l Definition: Utility function for patient population

We set

Utilities for action on single patient

TP $!
&
, +$! ! =

1

32
&

!+,

)
$!
&
+$! ! , FP $!

&
, +$! ! =

1

3 1 − 2
&

!+,

)
1 − $!

&
+$! !

• TP , FN = 1 − TP, FP, and TN = 1 − FP are functions of action +$! and true parameter $!
& .
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Utility function → risk function

• TP + FN = 1 and FP + TN = 1, hence

9 ?", " 0 = :34TP + :56FN + :54FP + :36TN
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• We define the risk function as
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• W/0 = O-. − O/0 (> 0) … False negative loss
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Utility function → risk function

• TP + FN = 1 and FP + TN = 1, hence

• We define the risk function as

■ Loss caused by false positives or negatives

• W/0 = O-. − O/0 (> 0) … False negative loss

• W/. = O-0 − O/. (> 0) … False positive loss

l Maximization of the utility function = minimization of the risk function

9 ?", " 0 = :34TP + :56FN + :54FP + :36TN

= :56 − :34 FN + :54 − :36 FP + :34 + :36.

A ?", " 0 ; C = D56FN ?", " 0 + D54FP ?", " 0 .
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Bayes risk and optimal action

A ?"; C =E

* "
E
,

F ! |" 0 , G H " 0 A " 0 , ?" ! ; C

?"∗ = min
8*∈:

A ?"; C

l Definition: Optimal action ?"∗ minimizes the Bayes risk

• B ! |" & , : X " & : True generative process of ! and " & (unknown)

as

• Ω: Set of possible functions that map 0,1 → 0,1

• ! : Test results

• " & : Patients’ true states

• [" ! : Action (estimated patients’ states) ∈ 0,1 )
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Bayes risk and optimal action

?"∗ = min
8*∈:

A ?"; C

l Definition: Optimal action ?"∗ minimizes the Bayes risk

• B ! |" & , : X " & : True generative process of ! and " & (unknown)

as

• Ω: Set of possible functions that map 0,1 → 0,1

• ! : Test results

• " & : Patients’ true states

n Bayes risk is unobservable because we do not know F ! |" 0 , G H " 0 .

• [" ! : Action (estimated patients’ states) ∈ 0,1 )

A ?"; C =E

* "
E
,

F ! |" 0 , G H " 0 A " 0 , ?" ! ; C
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Posterior risk in Bayesian optimal setting

l Definition: Posterior risk

l Theorem: 

In the Bayesian optimal setting, posterior risk coincides with

Bayes risk with expectation:

LA ?" ! ; D =E
*

( "|!, G A ", ?" ! ; C

A ?"; C = M, LA ?" ! ; C .

• ' "|!, : : Posterior distribution (known)

n Posterior risk is observable.

• \1 … : expectation of ! according to the true generative process
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Bayesian optimal setting
l Definition:

When the assumed model is equivalent to the true model F !|", G H " , 

the setting is said to be Bayesian optimal.

# ! ", G ' " = F !|", G H " , ∀" ∈ 0,1 ), ∀! ∈ 0,1 '
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Bayesian optimal setting
l Definition:

When the assumed model is equivalent to the true model F !|", G H " , 

the setting is said to be Bayesian optimal.

n Under the Bayesian optimal setting, the posterior probability is given by

# ! ", G ' " = F !|", G H " ,

M, LA ?" ! ; C =E
,

( ! E
*

1

* !
F ! ", G H " A ", ?" ! ; C

' "|!, : =
B ! ", : X "

M !
, M ! =&

"
B ! ", : X "

∀" ∈ 0,1 ), ∀! ∈ 0,1 '

Substituting the posterior probability into the posterior risk yields
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Bayesian optimal setting
l Definition:

When the assumed model is equivalent to the true model F !|", G H " , 

the setting is said to be Bayesian optimal.

n Under the Bayesian optimal setting, the posterior probability is given by

# ! ", G ' " = F !|", G H " ,

M, LA ?" ! ; C =E
,

( ! E
*

1

* !
F ! ", G H " A ", ?" ! ; C

' "|!, : =
B ! ", : X "

M !
, M ! =&

"
B ! ", : X "

∀" ∈ 0,1 ), ∀! ∈ 0,1 '

= ∑,∑*F ! ", G H " A ", ?" ! ; C …Bayes risk

Substituting the posterior probability into the posterior risk yields

' ! = M !
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l Definition:

Action ?"∗∗ minimizes posterior risk under the Bayesian optimal setting

l Theorem: 

?"∗∗ is the optimal action that minimizes Bayes risk.

n Proof :

By definition, LA ?" ! ; C ≥ LA ?"∗∗ ! ; C holds for any ?" ! .

Expectation with respect to ! on both sides leads to A ?"; C ≥ A ?"∗∗; C .

• _̀ [" ! ; b : Posterior risk under the Bayesian optimal setting
• ` ["; b : Bayes risk
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Posterior risk minimization
l Definition:

Action ?"∗∗ minimizes posterior risk under the Bayesian optimal setting

l Theorem: 

?"∗∗ is the optimal action that minimizes Bayes risk.

n Proof :

By definition, LA ?" ! ; C ≥ LA ?"∗∗ ! ; C holds for any ?" ! .

Expectation with respect to ! on both sides leads to A ?"; C ≥ A ?"∗∗; C .

• _̀ [" ! ; b : Posterior risk under the Bayesian optimal setting
• ` ["; b : Bayes risk

n Using posterior risk, which is observable, the optimal action is obtained.
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Cutoff-based estimator

l Theorem:

The optimal action is given by a cutoff-based function as 

562
∗ ! = P 42 ! >

/D54
D56 1 − / + D54/

.

• N!: Posterior marginal probability of 9-th patient under Bayesian optimal setting

• 2: Prevalence

• W/., W/0: Loss caused by false positives or negatives

• c(d): Indicator function (1 if d is true, 0 otherwise)
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l Theorem:

The optimal action is given by a cutoff-based function as 

n Proof: Minimization of the posterior risk under the constraint +$! ∈ {0,1}.
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Cutoff-based estimator

l Theorem:

The optimal action is given by a cutoff-based function as 

n Proof: Minimization of the posterior risk under the constraint +$! ∈ {0,1}.

n Cutoff-based action is the optimal for the map 0,1 → 0,1 .

562
∗ ! = P 42 ! >

/D54
D56 1 − / + D54/

.

• N!: Posterior marginal probability of 9-th patient under Bayesian optimal setting

• 2: Prevalence

• W/., W/0: Loss caused by false positives or negatives

• c(d): Indicator function (1 if d is true, 0 otherwise)
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Summary: optimal action

Posterior distribution 
on 0,1 )

Posterior marginal probability
for each patient

42

1 − 42

0 1

N! =
1

M !
&

"
$! ? ! ", : L "' " !, : =

1

M !
? ! ", : L "
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Summary: optimal action

Setting loss W/. and W/0

Posterior distribution 
on 0,1 )

Posterior marginal probability
for each patient

42

1 − 42

0 1

+$!
∗ !

= < =! , >
?@"#
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• 2: Prevalence
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Summary: optimal action

Setting loss W/. and W/0

Posterior distribution 
on 0,1 )

Posterior marginal probability
for each patient

42

1 − 42

0 1

+$!
∗ !

The appropriateness of marginalization as the diagnostic variable 
is mathematically supported by the area under the curve.

= < =! , >
?@"#

@"$ 1 − ? + @"#?

• 2: Prevalence

N! =
1

M !
&

"
$! ? ! ", : L "' " !, : =

1

M !
? ! ", : L "
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Details are shown in arXiv:2110.10877.
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Unified view of well-known actions

✦ Maximum posterior marginal (MPM) estimator 

✦ Youden index maximization: frequently used in medical statistics

+$!
∗ = c N! >

2W/.
W/0 1 − 2 + W/.2

Optimal action:

• Defined by +$! = c N! > 0.5

• Corresponds to Bayes risk minimizaEon at the loss W/. = 1 − 2, W/0 = 2

• When 2 < 0.5, the decrease of FP is preferred in the action.

• Defined by risk minimization at the loss W/. = W/0 = 0.5.

• Corresponds to the action +$! = c N! > 2 .

❗MPM esEmator for group tesEng, which is efficient at small 2,
immediately leads to a decrease of FP rather than FN.

29/50
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Usefulness of Bayesian optimal setting
n Bayesian optimal setting gives the upper bounds.  

l The Bayesian optimal setting is not realistic.

• ? ! ", : L " = B !|", : X " does not generally hold.

l Bayesian optimal setting can describe possible optimal decision.

• Optimal action is given by the posterior marginal probability.

• Optimal action leads minimal Bayes risk.

l From the Bayesian optimal setting, we can obtain practical guides.
• There is no gain to introduce GT in the parameter region 
where GT under the Bayesian optimal setting is not efficient.

l Inequalities bounded by the Bayesian optimal setting are equivalent to 

those that hold on the Nishimori line in spin-glass theory.
See Iba, JPA (1999) & Nishimori (2001)
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Algorithm for Actual Inference 
in Group Testing
Graphical representation and message passing

A Sakata, J Phys Soc Jpn 89, 084001 (2020)
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Approximation by message passing
• We know that 

is the optimal in terms of Bayes risk minimization.

562
∗ ! = P 42 ! >

/D54
D56 1 − / + D54/
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Approximation by message passing
• We know that 

is the optimal in terms of Bayes risk minimization.

• The remaining problem is the calculation of 

the posterior marginal probability 42 ! . 

• The cost for the exact computation is R(exp(0)).

→ Approximation: message passing on the graphical representation

(computational cost is a polynomial of 0).

562
∗ ! = P 42 ! >

/D54
D56 1 − / + D54/

32/50



Graphical representation: factor graph

' j ∝ exp n&

!,4
o!4p!p4

• 2-body spin-glass model

≡@

!,4
r!4 p!, p4; o!4
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Graphical representation: factor graph

Procedures for message passing:

• Product of factors W

• Summing out the variables

' j ∝ exp n&

!,4
o!4p!p4

V2 VCo!4

• 2-body spin-glass model

' j ∝ exp n &

!,4,5
o!45p!p4p5

≡ @

!,4,5
r!45 p!, p4, p5; o!45

• 3-body spin-glass model

V2

VC VD

o!45

≡@

!,4
r!4 p!, p4; o!4

: Variable node

: Factor node
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Sum-product on factor graph

XEXFXGXH

ℎ

ZEZFZG

• Example: Calculate ( XH [ = ∑I#∑I$∑I% ( \|[ (J XG on the graph
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Sum-product on factor graph

XEXFXGXH

ℎ

ZEZFZG

• Example: Calculate ( XH [ = ∑I#∑I$∑I% ( \|[ (J XG on the graph

( XH [ =E
I#

WGH XG, XH; ZG ' XG, ℎG E
I$

WFG XF, XG; ZF E
I%

WEF XE, XF; ZE

ü Equivalent to the transfer matrix method

]̂E→F XF]̂F→G XG]̂G→H XH

• st%→! u! : Message from 6-th factor node to 9-th variable node (input message)
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Sum-product on factor graph

( XL [ = E
I#,I&

WF XG, XH, XL; ZF E
I%,I$

WE XE, XF, XL; ZE

XEXF

XL

XGXH

ZEZF

• Example: Calculate ( XL [ = ∑I&⋯∑I% ( \|[ on the graph

= ]̂E→L XL

st,→7 u7st8→7 u7

= ]̂F→L XL

n Marginal distribu7on is given by the product of the input messages.
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Sum-product on factor graph

( XH [ =E
I#

WG XG, XH; ZG E
I$

WF XF, XG; ZF E
I%

WE XE, XG; ZE

• Example: Calculate ( XH [ = ∑I#∑I$∑I% ( \|[ on the graph
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Sum-product on factor graph

( XH [ =E
I#

WG XG, XH; ZG E
I$

WF XF, XG; ZF E
I%

WE XE, XG; ZE

• Example: Calculate ( XH [ = ∑I#∑I$∑I% ( \|[ on the graph

XGXH ZG
XE

XF

ZE

ZF

]̂E→G XG]̂F→G XG

t9→9 u9

^G→G XG ]̂G→H XH
• t!→% u! : Message from 9-th variable node to 6-th factor node (output message)
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General form of message passing

]̂N→2 X2 =
1

*̀N→2
E
O∖I'

WN \|ZN a
C∈ℳ(N)∖2

Ĉ→N(XC)

^2→R X2 =
1

*2→R
'(X2) a

S∈T(2)∖R

]̂S→2(X2)

"v #w
"x

"y

…]̂N→2

"v#z
#x

#{

^2→R …

L

^∗→R

]̂∗→2

Marginal distribu7on:

(2 X2 =
1

*2
'(X2) a

S∈T(2)

]̂S→2(X2)

• | 9 : Set of multi-body interactions that u! belongs to

• ℳ 6 : Set of variables in the interaction ~%

• � ∖ Å: Set of the elements in � except Å

When the graph does not have any loops, the 
computation is exact.
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Factor graph for group testing

Factor node
(Test)

Variable node
(Patients)

Prior distribu?on
(Prevalence)

ZE ZF ZG ZH

XE XF XG XH XL XU

Example: • Each pa7ent belongs to 2 pools

• Each pool contains 3 pa7ents

Pooling 
matrix

Factor : r% = B-.5% + 1 − B-. 1 − 5% E ", F:% + B/.5% + 1 − B/. 1 − 5% 1 − E ", F:%
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Meaning of messages in group testing
• ℳ 6 : Set of the patients in 6-th pool

• | 9 : Set of pools that 9-th patient belong to

"v #w
"x

"y

…]̂N→2

"v#z
#x

#{

^2→R …

L

^∗→R

]̂∗→2

b c

ℳ e
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Meaning of messages in group testing
• ℳ 6 : Set of the patients in 6-th pool

• | 9 : Set of pools that 9-th patient belong to

l Variables are binary, hence the messages can be 

represented by Bernoulli variables.

• st%→! u! = Bernoulli Ü2%→! , t!→% u! = Bernoulli 2!→%

"v #w
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Meaning of messages in group testing
• ℳ 6 : Set of the patients in 6-th pool

• | 9 : Set of pools that 9-th patient belong to

l Variables are binary, hence the messages can be 

represented by Bernoulli variables.

• st%→! u! = Bernoulli Ü2%→! , t!→% u! = Bernoulli 2!→%

l Meaning of messages

• Ü2%→!: Probability of positive for 9-th patient 

after performing tests on 6-th pool 6 ∈ | 9

• 2!→%: Probability of positive for 9-th patient

before performing test on 6-th pool 6 ∈ | 9

"v #w
"x

"y

…/̀N→2

"v#z
#x

#{

/2→R …

2

/∗→R

/̀∗→2

b c

ℳ e
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Message passing for group testing

/̀N→2 =
9N
*̀N→2

/2→N =
/∏R∈T 2 ∖N /̀R→2

*2→N

VW%→! = X% + X% 1 − Y
'∈ℳ % ∖!

1 − ?'→% +Z% Y
'∈ℳ % ∖!

1 − ?'→%

W!→% = ? Y
+∈, ! ∖%

V?+→! + 1 − ? Y
+∈, ! ∖%

1 − V?+→!

N! =
2∏%∈; ! Ü2%→!

2∏%∈; ! Ü2%→! + 1 − 2 ∏%∈; ! (1 − Ü2%→!)

l Message from variable to factor :

l Message from factor to variable :

X% = [-#\% + 1 − [-# 1 − \% , Z% = ["#\% + 1 − ["# 1 − \%where

l Marginal distribuEon :

• ?: Prevalence
• T ] : Pools that include 

]-th patient
• ℳ ^ : Patients 

in ^-th pool 
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• 3 = 1000,4/3 = 0.5, B-. = 0.95, B/. = 0.1, pool size of 10 for Bayesian optimal setting

• _: Number of tests (pools), `: Number of patients

Error correction by group testing
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W/0 = W/. = 1/2

• Youden index
maximization:

W/0 = 1 − 2

W/. = 2

• MPM es?mator :
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• _: Number of tests (pools), `: Number of patients

Error correction by group testing
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n TP > B-.: 

FN is corrected by GT.

n FP < B/.: 

FP is corrected by GT.



• 3 = 1000,4/3 = 0.5, B-. = 0.95, B/. = 0.1, pool size of 10 for Bayesian opEmal segng

• _: Number of tests (pools), `: Number of pa?ents

Error correction by group testing
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For the derivation of theoretical lines, see arXiv:2110.10877

Youden index
maximization W/0 = W/. = 1/2

• Youden index
maximiza?on:

W/0 = 1 − 2

W/. = 2

• MPM estimator :
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n TP > B-.: 

FN is corrected by GT.

n FP < B/.: 

FP is corrected by GT.



Comparison with two-stage testing
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Youden

MPM

Two-stage
TP = [-#

B-.

• 3 = 1000,4/3 = 0.5, 2 = 0.05, B/. = 0, pool size of 10 for Bayesian optimal setting

TP

ü In two-stage testing, 
the number of the 1st stage is 500,
and the total number of tests is about 700.

• Bayesian inference + optimal action outperform
two-stage testing with smaller number of tests
using appropriate cutoffs.



Correspondence with 
replica method
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Replica method
• Analytical method for obtaining partition function and thermal

expectation in random systems such as spin-glass model

• Techniques for averaging over quenched randomness

44/50

Mc ln * h → lim
d→0e

j

jk
Mc *

d h
• â: quenched randomness

• M(â): partition function



Replica method
• Analytical method for obtaining partition function and thermal

expectation in random systems such as spin-glass model

• Techniques for averaging over quenched randomness

• In the case of group testing, quenched randomness corresponds to

patients’ true states " 0 , test results !, and pooling matrix G.

• We can obtain the typical performance of Bayesian group testing by replica 
method.

44/50

Mc ln * h → lim
d→0e

j

jk
Mc *

d h
• â: quenched randomness

• M(â): partition function

M,,1,*(") TP , M,,1,*(") E
*

62 ( " !, G etc.



Message passing → Replica method
l Theorem: 

The empirical distribution of messages at 0 → ∞ characterizes 

the saddle point of the replica symmetric free energy.

[̂./ ?. ≡ lim0→1
1

`?k
l
!23

0
l
+∈, !

m!
4 n ?!→+ − ?.

[̂.5 ?. ≡ lim0→1
1

` 1 − ? k
l
!23

0
l
+∈, !

1 − m!
4 n ?!→+ − ?.

[̂6/ V?6 ≡ lim0→1
1

_o?
l
+23

7
l

!∈ℳ +
m!
4 n V?+→! − V?6

[̂65 V?6 ≡ lim
0→1

1
_o?

l
+23

7
l

!∈ℳ +
1 − m!

4 n V?+→! − V?6

• Empirical distribuEons : 

Details are shown in arXiv:2110.10877.
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…output messages from positive patients

…output messages from negaEve paEents

…input messages to positive patients

…input messages to negative patients



Related Topics in Bayesian Group Testing
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Estimation of prevalence

Details are shown in JPSJ 89, 084001 (2020).

l Hyperprior distribution ä(2) is introduced.

Prevalence /

Hyperprior
distribution

Test results

PaEents’
states

Prior
distribution

ZE ZF

XE XF XG XH

AddiEonal 
messages

Graphical representation of 

prevalence estimation

l Prevalence is regarded as a 
dynamical variable.

l Prior distribution L(2) is regarded as
interaction between ã and 2.

• We set ä(2) as the beta distribuEon,
which is the conjugate of the 
Bernoulli distribuEon.
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Adaptive pooling + message passing
lAdaptive group testing : 

Sequentially design pools based on test results in previous steps

lFrom the viewpoint of active learning :

Take into account the pools that can output uncertain test results

• Uncertain = The posterior distribution cannot describe the test results

lUncertainty measure: Posterior predictive distribution

lNew pool mG∗ is given by

B ~< å, :, F: =&

=
? ~< ã, F: ' ã å, :

mG∗ = argmax
p

q [, G, mG

• 1: Existing pools 
• q: Obtained test results
• r1: Candidate new pool
• \′: New test results

Details are shown in PRE 103, 022110 (2021).
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Dependence on number of tests
• 3 = 1000, 2 = 0.02, B-. = 0.9, B/. = 0.05,	Cutoff = 0.5

• é times adaptive testing on pools with size of 1 or 2 after 300 random tests 

AdapEve pooling reduces the number of tests required for TP > B-..
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Summary
• Bayesian inference for group tes7ng

• A variant of the sparse esEmaEon problem with discrete variables

• ConsideraEon as a staEsEcal physics model

• Iden7fica7on of pa7ents’ states as a Bayesian decision problem

• OpEmal acEon is given by the Bayesian opEmal segng

• Approximate calcula7on of the posterior marginal probability
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Summary
• Bayesian inference for group testing

• A variant of the sparse estimation problem with discrete variables

• Consideration as a statistical physics model

• Identification of patients’ states as a Bayesian decision problem

• Optimal action is given by the Bayesian optimal setting

• Approximate calculation of the posterior marginal probability

The discussion in this talk is not restricted to group testing. 

Let’s map real problems to statistical physics and enjoy statistical inference!
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