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Evolution of the Universe and the Large-Scale Structure of the Universe
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Evolution of the Universe and the Large-Scale Structure of the Universe

Large-scale structure at present universe
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Evolution of the Universe and the Large-Scale Structure of the Universe

 The large-scale structure tells us about:
e Contents of the universe including dark matter and dark energy
e Initial condition of the universe

e etlc.
30% matter

70% dark energ 100% matter

Huterer et al. 2013
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All-sky surveys will be conducted.




Spectroscopic Observations to Measure the Large-scale Distributions

Galaxy spectrum
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Emission Line: a Key to Measure 3D Distributions

The observed wavelengths of emission lines are a measure of the distance.

3D intensity distribution
(= 3D galaxy distributions)
Is measured

2D distribution
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A Serious Problem: Contaminations and Noises

Hydrogen line signals Oxygen line signals Observed data
from near galaxies from distant galaxies at wavelength Aobs

obs.
noise

} Our proposal: }
¥ deep learning




Train a Deep Learning Model with Mock Observational Data

Generate ~30,000 realistic mock observational maps using fast
DM simulatino code + emission line model

Emission line model
(mass-to-luminosity relation)
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= -l" ) 3 ﬂ“
o - ¥ *' r
: Hoa Lo D |I

[0 - . 4B H““LH

S goo dbao y
-4
r T [ mice o8 x 2 x 30,000
M T + noise maps
| Mpc]



obsarvad (Ha+0Ill)

256x256

input:
Observed map

true (Olll)

Ground
trUth Xtrue

Evaluate

output:
Signal map

reconstructed (OIlll)

256x256

la et al. 2016)
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Machine Learns the Large-scale Structure...

observed true (Ha) true (OIll)

I reconstructed (Ha) reconstructed (Olll)

CNN

&

N: 1 https://youtu.be/J3c5Xk-5KTO




Conditional Generative Adversarial Network

* GAN: Generator and Discriminator are updated in an adversarial way.

Reconstruct
a map

obsarved (Ha-+0lll)

Xobs: observed map

Xobs: observed map Xtrue or Xobs

ructed (Ha)

4  Generator

: decrease L

Trained In an
adversarial way

G(Xobs): fake map

obsarved (Ha-+0lll)

41 Distinguish
\ true and fake

D(Xus, X [increase L
probability that =
X = Xtrue

Loss function: L[G, D] = log D(Xobs, Xtrue) = 1og[1 — D(Xobs, G(Xobs))] + A <‘Xtrue — G(Xobs)D



What if we do not use GAN?

The network tends to reproduce obscured images

Observed (Line1+Line2) Reconstruct (Line2) True (Line2)




Reconstruction of 3D Maps

Angular 4 Observed data

directions §

Spectral direction
(observed wavelength

= di Result:
Observed data = distance from us)

(Line1 + Line 2 +noise) Line True Reconstruct cf.) True
| | (Line2) (Line2)

(Line1+Line2)

01

A simple network does not work well...



Pre-processing Input Data with Physical informaiton

Angular 7
directions §

Observed date;

( AHa - Ao ) % (1+2)

0 : known quantity

Spectral directi‘n
(observed wavelength
= distance from us)

Oxygen line

A galaxy spectrum




Pre-processing Input Data with Physical informaiton

Observed date;

Angular 7
directions §

( AHa = Ajonnp ) % (1+2)
1 : known quantity

Spectral directi‘n
(observed wavelength
= distance from us)

The structure traced The structure traced
by oxygen line by hydrogen line

contaminations
& obs. noise

contaminations

& obs. noise T




Pre-processing Input Data with Physical informaiton

KM & Yoshida 2021

Observed jata
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Reconstruction Result

KM & Yoshida 2021

. . Statistics are also reproduced
e T e.d., Power spectrum

Observed (Ha+[Olll]+noise) Reconstruct [Oll]
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What Does the Machine Learns to Separate the Signals?

Let’s have a look at the convolutional filters.

Convolution

Input (observed)

Convolutional filters 1st layer outputs



Filters in 2D Separation Models

observed

reconstructed

--20

- 15
10
=
0

- 20

=15

Examples of the filters in the 1st layer

true (Ha) true (Olll)

reconstructed (Ha)

Seems to be capturing™
typical large-scale

features like filaments
and voids

10

Structures at different distances have different features (e.g., scale length, bias).
— The machine might distinguish signals from different distances by learning them.



Filters in 3D Network with Pre-processing

Input: kernel: (32, 32, 16, 64)

(64, 64, 32, 2) (3, 3, 3, 2)
: ' - yi=a(wii =x1+w2«x2+ bi) » Next layer ...

Convolutional filters (1st layer)
2 3

— Our method with physical
information is working
effectively as expected!

Some filters pick up
synchronizing
signals in two inputs



Challenges in Application for Actual Observational Data

Can we trust the reconstructed maps?
e How precise is the reconstructed map? Is there a generation error?
 |s the model dependent on the assumption in the training model?

— Evaluation of the generation error and the effects of the assumed
model is important to extract cosmological information from future
observational data.



How Precise Is the Reconstructed Map?

Detectability of > 30 peaks

e Precision (Ncorrect/Nrec) of a machine: 76%
e Precision when we combine five networks (bugging): 91%

outputs of 5 networks

. . . - orE
Machines trained on the different data

and with different random feeds It is also possible to evaluate the generation error by combining
multiple networks (e.g., taking the variance).

| — Outputt

— Output2

Input — Output3

| — Output4

| —» Output5




Does the Reconstruction Depend on the Assumed Model?

Emission line model:
(what we assume)
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Cosmological information
(what we want to know from the observation)
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What if the assumed line emission model
in training data is wrong?




Test with Different Line Emission Models

Model 1
(x2 brighter
intensity model)

Model 2
(different mass-to-
luminosity model)

True

True

KM+ 2021
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Reconstructed

Reconstructed

Statistics as well as bright pixel
positions are reproduced
properly irrespective to the
assumed models in test data
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What about noise model? More
different models? — Future study



Summary

A generative adversarial network can be used to reconstruct the
large-scale distributions of the universe from noisy observational
maps.

e We can get good reproducibility by pre-processing the input data
based on physical information.

e The machine learns the typical features in the large-scale structure
as well as the synchronizing signals in two input data.

e Generation errors and the uncertainties in assumed models should
be carefully evaluated In future actual use — combining multiple
machines would be an important strategy.



