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Motivation

An agent has access to a huge number of data over its lifetime

(Krizhevsky et al. 2009)

Learn new concepts from few examples

(Bertinetto et al. 2018)
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Motivation

Target task: a k -class classification problem.

k classes.

Few samples per class.

Problem: directly training on the data would probably result in overfitting.
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Motivation

Target data: classification task with a few samples per class.

Source data: many classes with lots of data per class.

Goal: train a feature map f on the source data that is “good” for the
target task.

Tomer Galanti On the Role of Neural Collapse in Transfer and Few-Shot LearningDecember 7, 2022 5 / 32



Motivation

Approach 1: Few-shot learning
Split the source data into many separate tasks.

Use the current feature map f .
For each random task and few samples S from the task, train a
classifier gS on top of f .
Choose f that minimizes the expected error (w.r.t. the task + data) of
classifiers gS ◦ f .

Examples:

Matching Networks (Vinyals et al. 2016).

LSTM Meta-Learner (Ravi et al. 2017).

MAML (Finn et al. 2017).

(Bertinetto et al. 2018)
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Motivation

Approach 2: Transfer learning (Caruana 1995; Bengio 2012; Yosinski et al.
2012).

Treat the source data as one classification task.

Train one classifier g̃ ◦ f on the source task (e.g., ResNet-50 on
ImageNet).

Train a small complexity classifier g (e.g., a linear layer) on top of f
using the target data.
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Motivation

Transfer learning works well between tasks of different modalities (Xu
et al. 2022).

Large language models (GPT-3, Bert, etc’).

Transferring between different tasks (e.g., image classification to
image segmentation).
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Motivation

Surprisingly, transfer learning is competitive with the first approach in
few-shot learning (Dhillon et al. 2020; Tian et al. 2020).

Main result: an explanation of this success via neural collapse.
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Problem Setup

Target task:

k classes Pc .

Few samples (n) per class Sc .

Source task:

l classes P̃c .

Many samples (m) per class S̃c .

Algorithm:

We train on a model g̃ ◦ f to classify S̃.

We train g to classify f(S).
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Illustration
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Plan for the analysis

1 Neural collapse – on the training set.
2 Neural collapse generalizes to new samples.
3 Neural collapse generalizes to new classes.
4 Neural collapse (in new classes) implies few-shot learnability.
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Neural Collapse

According to Papyan et al. (2020)

Train a large overparameterized NN for classification.

The feature embeddings belonging to training samples of the same
class concentrate around their class means.
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Reformulation of neural collapse

Class-distance-normalized variance: for two class distributions Q1 and
Q2 with feature embedding f :

Vf (Q1,Q2) =
Varf (Q1) + Varf (Q2)

2∥µf (Q1) − µf (Q2)∥2

where

µf (Q) = Ex∼Q [f(x)] - feature mean for Q ;

Varf (Q) = Ex∼Q [∥f(x) − µf (Q)∥2] - feature variance for Q .

Neural collapse: For empirical distributions S̃i and S̃j for classes i, j in the
training data

lim
t→∞

Vf (S̃i , S̃j) = 0
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Experiments
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Figure: Normalized variance for Convolutional network of varying depth trained on
CIFAR10.

Tomer Galanti On the Role of Neural Collapse in Transfer and Few-Shot LearningDecember 7, 2022 15 / 32



Refined plan for the analysis

Assumption: The embeddings of training samples are clustered.

Step 1: The embeddings of test samples are clustered.

Step 2: The embeddings of samples from new classes are clustered.

Step 3: if Step 2 holds, we can efficiently learn to classify with very
few samples.
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Assumptions

What is the relationship between the source and target tasks?

What if the two tasks are arbitrary?

Then, we should not expect the model to transfer very well...
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Assumptions

For simplicity, we think of the classes as random classes from ImageNet.

The source classes P̃1, . . . , P̃l and target classes P1, . . . ,Pk are i.i.d.
samples from the same distribution of classes D.
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Objective

Suppose we have a downstream task P with classes P1, . . . ,Pk ∼ D, we
want to minimize the expected error of random classifiers hS,f = gS ◦ f for
random sets S = ∪k

i=1Si (each Si is of size n).

EPErrP(f) := EP1,...,Pk∼D︸       ︷︷       ︸
random

target task P

ES1,...,Sk︸   ︷︷   ︸
few samples

per class

E(x,y)∼PI[hS,f (x) , y]︸                      ︷︷                      ︸
error on task P

hS,f (x) := argmin
c∈[k ]

∥f(x) − µf (Sc)∥

We think of this objective as an expected error on a downstream task.
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First Attempt

Assume neural collapse happens at training: Vf (S̃i , S̃j)→ 0.

Neural collapse generalizes to new samples:

Vf (P̃i , P̃j) ≲ Vf (S̃i , S̃j) + om(1)

where P̃i and P̃j are the corresponding class distributions.

Neural collapse generalizes to new classes:

EP1,P2∼P [Vf (P1,P2)] ≲ Avgi,j[Vf (P̃i , P̃j)] + ol(1)

Neural collapse implies few-shot learnability: for a linear classifier
trained with n samples over 2 classes,

ErrPij (f) ≤
(
1 + 1

n

)
· Vf (P1,P2)
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Problems

Problems:

If {µf (P)}P is bounded and the support of D is infinite, then
EPc,Pc′ [Vf (Pc ,Pc′)] = ∞.

Generalization bounds typically depend on supf∈F ℓ(f).
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Generalization to New Classes

Theorem (Informal)

Let F be a class of q depth ReLU neural networks f : Rd → Rp . LetD be a
distribution over classes and let {P̃c}

l
c=1 ∼ D

l . Then, with a high probability
over the selection of the classes, for every f ∈ F and ∆ > 0, we have

EPErrP(f) ≤ (k − 1) · Avgi,j Err∆
P̃ij
(f) + O

 (k − 1) · p · C(f) ·
√

q log(l)
√

l ·∆

 ,
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Generalization to New Samples

Theorem (Informal)

Let F be a class of ReLU neural networks of depth q. Let P̃i and P̃j be two
class-conditional distributions. Then, with high probability over the
selection of S̃i ∼ P̃m

i and S̃j ∼ P̃m
j , for any f ∈ F and ∆ > 0, we have

Err∆
P̃ij
(f) ≤ m

m−n · Err∆
S̃ij
(f) + O

(
C(f) · np

√
q

√
m ·∆

)
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Few-Shot Learning and Normalized Variance

Two classes: Qi ,Qj .

Dataset: datasets Sc ∼ Qn
c .

Feature map: f : Rd → Rp (e.g., pretrained).

∆ = O(∥µf (Qi) − µf (Qj)∥).

Err∆Qij
(f) ≲ (1 + 1

n ) · Vf (Qi ,Qj)
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Few-Shot Learning and Normalized Variance

If f ◦ Qi and f ◦ Qj are also spherically symmetric,

ErrQij (f) ≲ ( 1
p + 1

n ) · Vf (Qi ,Qj)
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Few-Shot Learning and Normalized Variance

Theorem (Informal)

Let F be a class of q depth ReLU neural networks f : Rd → Rp . With a
high probability over the selection of the training data {S̃c}

l
c=1, for every

f ∈ F , we have

EPErrP(f) ≤ (k − 1) m
m−n (1 + 1

n ) · Avgi,j Vf (S̃i , S̃j)

+ O

 (k − 1) · p · C(f) ·
√

q log(l)
√

l ·mini,j ∥µf (S̃i) − µf (S̃j)∥
+

C(f) · np
√

q
√

m ·mini,j ∥µf (S̃i) − µf (S̃j)∥
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Experimental Setup

Phase 1 (train)

Train h̃ = g̃ ◦ f to minimize cross-entropy classification loss on the
source classes.

Phase 2 (eval)

Few-shot task: 5 classes, n = 1, 5 samples per-class.

Train ridge regression on top of f using the 5 × n dataset with one-hot
labels.

Evaluate on test samples from each class.

Average over many tasks.
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Empirical Results

Method Architecture Mini-ImageNet CIFAR-FS FC-100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Networks [VBL+16] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73 - - - -
LSTM Meta-Learner [RL17] 64-64-64-64 43.44 ± 0.77 60.60 ± 0.71 - - - -

MAML [FAL17] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks [SSZ17] 64-64-64-64 49.42 ± 0.78† 68.20 ± 0.66† 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6
Relation Networks [SYZ+18] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.7 55.0 ± 1.0 69.3 ± 0.8 - -

SNAIL [MRCA18] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - - - -
TADAM [ORLL18] ResNet-12 58.50 ± 0.30 76.7 ± 0.3 - - 40.1 ± 0.4 56.1 ± 0.4

AdaResNet [MYMT18] ResNet-12 56.88 ± 0.62 71.94 ± 0.57 - - - -
Dynamics Few-Shot [GK18] 64-64-128-128 56.20 ± 0.86 73.0 ± 0.64 - - - -

Activation to Parameter [QLSY18] WRN-28-10 59.60 ± 0.41† 73.74 ± 0.19† - - - -
R2D2 [BHTV19] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1 65.3 ± 0.2 79.4 ± 0.1 - -

Shot-Free [RBS19] ResNet-12 59.04 ± n/a 77.64 ± n/a 69.2 ± n/a 84.7 ± n/a - -
TEWAM [QSL+19] ResNet-12 60.07 ± n/a 75.90 ± n/a 70.4 ± n/a 81.3 ± n/a - -

TPN [LLP+19] ResNet-12 55.51 ± 0.86 75.64 ± n/a - - - -
LEO [RRS+19] WRN-28-10 61.76 ± 0.08† 77.59 ± 0.12† - - - -
MTL [SLCS19] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 - - - -

OptNet-RR [LMRS19] ResNet-12 61.41 ± 0.61 77.88 ± 0.46 72.6 ± 0.7 84.3 ± 0.5 40.5 ± 0.6 57.6 ± 0.9
MetaOptNet [LMRS19] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 72.0 ± 0.7 84.2 ± 0.5 41.1 ± 0.6 55.3 ± 0.6

Transductive Fine-Tuning [DCRS20] WRN-28-10 65.73 ± 0.68 78.40 ± 0.52 76.58 ± 0.68 85.79 ± 0.5 43.16 ± 0.59 57.57 ± 0.55
Distill-simple [TWK+20] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6

Distill [TWK+20] ResNet-12 64.82 ± 0.60 82.14 ± 0.43 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6
Ours (simple) WRN-28-4 58.12 ± 1.19 72.0 ± 0.99 68.81 ± 1.20 81.49 ± 0.98 44.96 ± 1.14 57.21 ± 10.89

Ours (lr scheduling) WRN-28-4 60.37 ± 1.25 72.35 ± 0.99 70.0 ± 1.29 81.39 ± 0.96 43.42 ± 1.0 54.14 ± 1.1
Ours (lr scheduling + model selection) WRN-28-4 61.27 ± 1.14 74.74 ± 0.76 72.37 ± 1.12 82.94 ± 0.89 45.81 ± 1.27 56.85 ± 1.30

Table: 1-shot and 5-shot classification performance on Mini-ImageNet,
CIFAR-FS, and FC-100.
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Experimental evidence for NC2
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We plot min
i,j
∥µf (S̃i) − µf (S̃j)∥ when training WRN-28-4 on CIFAR-FS.
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Empirical Results
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Figure: Within-class variation collapse of wide ResNet on CIFAR-FS with
varying number of source classes.
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Conclusions

First theoretical proof that learning embeddings with foundation
models works.

Small normalized variance implies good few-shot performance.

Theoretical and empirical evidence on the relations between NC and
transferability.

Some open questions

Can we get better transferability by explicitly enforcing neural
collapse?

Are there other structures that are favorable for adaptivity and
transferability?

Can the analysis be extended beyond classification?

What about transfer between different modalities? Tasks?
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