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@ An agent has access to a huge number of data over its lifetime
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(Krizhevsky et al. 2009)

@ Learn new concepts from few examples
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Target task: a k-class classification problem.
@ k classes.
@ Few samples per class.
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Target task: a k-class classification problem.
@ k classes.
@ Few samples per class.

Problem: directly training on the data would probably result in overfitting.

Tomer Galanti On the Role of Neural Collapse in Transfer and December 7, 2022 4/32



° Target data: classification task with a few samples per class.
5
s [ EN

@ Source data: many classes with lots of data per class.
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@ Goal: train a feature map f on the source data that is “good” for the
target task.
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Approach 1: Few-shot learning
@ Split the source data into many separate tasks.
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Approach 1: Few-shot learning
@ Split the source data into many separate tasks.
@ Use the current feature map f.
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(Bertinetto et al. 2018)
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Approach 1: Few-shot learning
@ Split the source data into many separate tasks.
@ Use the current feature map f.

@ For each random task and few samples S from the task, train a
classifier gs on top of f.
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(Bertinetto et al. 2018)
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Approach 1: Few-shot learning
@ Split the source data into many separate tasks.
@ Use the current feature map f.
@ For each random task and few samples S from the task, train a
classifier gs on top of f.
@ Choose f that minimizes the expected error (w.r.t. the task + data) of
classifiers gs o f.
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(Bertinetto et al. 2018)
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Approach 1: Few-shot learning
@ Split the source data into many separate tasks.
@ Use the current feature map f.
@ For each random task and few samples S from the task, train a
classifier gs on top of f.
@ Choose f that minimizes the expected error (w.r.t. the task + data) of
classifiers gs o f.

Examples:
@ Matching Networks (Vinyals et al. 2016).
@ LSTM Meta-Learner (Ravi et al. 2017).
@ MAML (Finn et al. 2017).
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Approach 2: Transfer learning (Caruana 1995; Bengio 2012; Yosinski et al.
2012).

@ Treat the source data as one classification task.

@ Train one classifier g o f on the source task (e.g., ResNet-50 on
ImageNet).

@ Train a small complexity classifier g (e.g., a linear layer) on top of f
using the target data.
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@ Transfer learning works well between tasks of different modalities (Xu
et al. 2022).

@ Large language models (GPT-3, Bert, etc’).

@ Transferring between different tasks (e.g., image classification to
image segmentation).
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Surprisingly, transfer learning is competitive with the first approach in
few-shot learning (Dhillon et al. 2020; Tian et al. 2020).

Tomer Galanti On the Role of Neural Collapse in Transfer and December 7, 2022 9/32



Surprisingly, transfer learning is competitive with the first approach in
few-shot learning (Dhillon et al. 2020; Tian et al. 2020).

Main result: an explanation of this success via neural collapse. J
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Problem Setup

Target task:
@ Kk classes P..
@ Few samples (n) per class S;.
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Problem Setup

Target task:
@ Kk classes P..
@ Few samples (n) per class S;.

Source task:
@ /classes P,.
@ Many samples (m) per class S..
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Problem Setup

Target task:
@ Kk classes P..
@ Few samples (n) per class S;.

Source task:
@ /classes P,.
@ Many samples (m) per class S..

Algorithm:
@ We train on a model § o f to classify S.
@ We train g to classify f(S).
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[llustration
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Plan for the analysis

@ Neural collapse — on the training set.

@ Neural collapse generalizes to new samples.

© Neural collapse generalizes to new classes.

© Neural collapse (in new classes) implies few-shot learnability.
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Neural Collapse

According to Papyan et al. (2020)
@ Train a large overparameterized NN for classification.

@ The feature embeddings belonging to training samples of the same
class concentrate around their class means.
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class 1 classifier

class 1 mean

155 3 simplex ETF vertex

» § i dass 2 feature
class 2 classifler O

Tomer Galanti On the Role of Neural Collapse in Transfer and December 7, 2022 13/32



Reformulation of neural collapse

Class-distance-normalized variance: for two class distributions Q; and
Q. with feature embedding f:

Var((Qy) + Var/(Qg)
Vi(Q1, Qo) =
(@1 Q2) 2llur(Q1) — ur(Q2)IR

where

@ uf(Q) = Ex-ql[f(x)] - feature mean for Q;
@ Vare(Q) = Ex-q[llf(x) — u¢(Q)|?] - feature variance for Q.
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Reformulation of neural collapse

Class-distance-normalized variance: for two class distributions Q; and
Q. with feature embedding f:

Vari(Qq) + Vars(Q)
Vi(Qy, Qo) =
(@1 Q) 2llur(Q1) — ur(Q)I?
where
@ uf(Q) = Ex-ql[f(x)] - feature mean for Q;
@ Vari(Q) = Ex-q|llf(x) — u¢(Q)II?] - feature variance for Q.

Neural collapse: For empirical distributions S; and S,- for classes i, j in the
training data

lim V¢(5,,5) =0

t—oo
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Experiments

— =
4 layer2. 25 4 1ay
R e
/ ==
| S T =
o
z 2 R
a 4 layer
o -
27 \,_\’_’\g_'*
273 273
27 27
100 200 300 400 500 0 100 200 300 400 500 o 100 200 300 400 500
Epoch Epoch Epoch
3 layers 5 layers 10 layers
25 F 25
=
=5
. = .
*
22 - 22
[=} a
8 8
27 27
100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
14 layers 18 layers 20 layers

Figure: Normalized variance for Convolutional network of varying depth trained on
CIFAR10.
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Refined plan for the analysis

@ Assumption: The embeddings of training samples are clustered.
@ Step 1: The embeddings of test samples are clustered.
@ Step 2: The embeddings of samples from new classes are clustered.

@ Step 3: if Step 2 holds, we can efficiently learn to classify with very
few samples.

Tomer Galanti On the Role of Neural Collapse in Transfer and December 7, 2022 16/32



What is the relationship between the source and target tasks?
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What is the relationship between the source and target tasks?

What if the two tasks are arbitrary?
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What is the relationship between the source and target tasks?

What if the two tasks are arbitrary?

Then, we should not expect the model to transfer very well...
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For simplicity, we think of the classes as random classes from ImageNet.
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For simplicity, we think of the classes as random classes from ImageNet.

The source classes I51,...,P, and target classes Ps,..., P are i.i.d.
samples from the same distribution of classes D.
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Objective

Suppose we have a downstream task P with classes Ps,..., Px ~ D, we

want to minimize the expected error of random classifiers hs s = gs o f for
random sets S = Uf‘:1 Si (each S; is of size n).
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Objective

Suppose we have a downstream task P with classes Ps,..., Px ~ D, we

want to minimize the expected error of random classifiers hs s = gs o f for
random sets S = Uf‘:1 Si (each S; is of size n).

EpErrp(f) := Epy..P-D Esi..5 E(xy)~pllhss(x) # y]
— —
random _ few samples error on task P
target task P per class
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Objective

Suppose we have a downstream task P with classes Ps,..., Px ~ D, we

want to minimize the expected error of random classifiers hs s = gs o f for
random sets S = Uf‘:1 Si (each S; is of size n).

EpErrp(f) := Epy..P-D Esi..5 E(xy)~pllhss(x) # y]
— —
random _ few samples error on task P
target task P per class

hs¢(x) = argmin||f(x) — us(Sc)ll
ce[k]
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Objective

Suppose we have a downstream task P with classes Ps,..., Px ~ D, we

want to minimize the expected error of random classifiers hs s = gs o f for
random sets S = Uf‘:1 Si (each S; is of size n).

EpErrp(f) := Epy..P-D Esi..5 E(xy)~pllhss(x) # y]
— —
random _ few samples error on task P
target task P per class

hs¢(x) = argmin||f(x) — us(Sc)ll
ce[k]

We think of this objective as an expected error on a downstream task.
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First Attempt

Assume neural collapse happens at training: V¢(S;, S;) — 0.

Tomer Galanti On the Role of Neural Collapse in Transfer and December 7, 2022 20/32



First Attempt

Assume neural collapse happens at training: Vf(é,-, Sj) — 0.

@ Neural collapse generalizes to new samples:
Vi(Pi,P)) < VK(S1,S)) + om(1)

where P; and P; are the corresponding class distributions.
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First Attempt

Assume neural collapse happens at training: Vf(é,-, Sj) — 0.

@ Neural collapse generalizes to new samples:
Vi(Pi,P)) < VK(S1,S)) + om(1)
where P; and P; are the corresponding class distributions.

@ Neural collapse generalizes to new classes:

Ep, ppp [Vi(P1. P2)] < Avgi[Vi(Pi, P))] + 0/(1)
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First Attempt

Assume neural collapse happens at training: Vf(é,-, éj) — 0.
@ Neural collapse generalizes to new samples:
Vi(Pi, B) s Vi(5i,§) + om(1)
where P; and 15,- are the corresponding class distributions.
@ Neural collapse generalizes to new classes:
Ep, pop [Vi(P1. P2)] < Avgi[Vi(Pi. B))] + (1)

@ Neural collapse implies few-shot learnability: for a linear classifier
trained with n samples over 2 classes,

Errp,(f) < (1+ 1) Vi(P1. P2)
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Problems:

@ If {ur(P)}p is bounded and the support of D is infinite, then
EPcipc, [Vf(Pc, Pcf)] = 00,

@ Generalization bounds typically depend on supyc# £(f).
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Generalization to New Classes

Theorem (Informal)

Let ¥ be a class of q depth RelU neural networks f : RY — RP. Let D be a

distribution over classes and let {f%} ~ D!, Then, with a high probability
over the selection of the classes, for every feF and A > 0, we have

£}

Vi-A

EpErrp(f) < (k—1) - Avgy,; Err’%(f)+0((k—1)~p-c(f). qlog(l)]
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Generalization to New Samples

Theorem (Informal)

Let ¥ be a class of ReLU neural networks of depth q. Let P; and P; be two
class-conditional distributions. Then, with high probability over the
selection of S; ~ P" and S; ~ ij, forany f € ¥ and A > 0, we have

C(f) - np+/q
Errg (f) < 2 - Emg(f) + O(%
[ ij m-
v
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Few-Shot Learning and Normalized Variance

@ Two classes: Q;, Q,.

o Dataset: datasets S. ~ Q;.

@ Feature map: f : RY — RP (e.g., pretrained).
® A =O(llur(Qi) — pue(QIN).

Erg(f) < (1+3)- Vi(Q. Q)
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Few-Shot Learning and Normalized Variance

If fo Q;and f o Q; are also spherically symmetric,

Errg,(f) < (5 + ) Vi(Q. Q)
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Few-Shot Learning and Normalized Variance

Theorem (Informal)

Let ¥ be a class of q depth ReLU neural networks f : R — RP. With a

high probability over the selection of the training data {30}2:1, for every
fe ¥, we have

EpEmp(f) < (k= 1)785(1+7) - Avai; Vi(S:. §)

0((k—1) p-C(f) yalogl) . c(f)-npva

VI minig e (8) = we(S)Il - Vm - mingg |us(S) - ;1,(3,-)”]
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Experimental Setup

Phase 1 (train)

@ Train h = § o f to minimize cross-entropy classification loss on the
source classes.

Phase 2 (eval)
@ Few-shot task: 5 classes, n = 1,5 samples per-class.

@ Train ridge regression on top of f using the 5 x n dataset with one-hot
labels.

@ Evaluate on test samples from each class.
@ Average over many tasks.
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Empirical Results

Method Architecture Mini-ImageNet CIFAR-FS FC-100
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Networks [VBL T 16] 64-64-64-64 43.56 +0.84 55.31 +£0.73 - - - -
LSTM Meta-Learner [RL17] 64-64-64-64 43.44+0.77 60.60+0.71 - - - -
MAML [FAL17] 32-32-32-32 48.70+1.84 63.11+0.92 589+ 1.9 71.5+1.0 - -

Prototypical Networks [SSZ17] 64-64-64-64 49.42+0.78" 68.20+0.66" 555+0.7 72.0+£0.6 35.3+0.6 48.6 £0.6
Relation Networks [SYZ 18] 64-96-128-256  50.44 + 0.82 65.32 £ 0.7 55.0+ 1.0 69.3£0.8 - -
SNAIL [MRCA18] ResNet-12 5571 +£0.99 68.88+0.92 - - - -

TADAM [ORLL18] ResNet-12 58.50 + 0.30 76.7 £0.3 - - 40.1+£04 56.1 0.4
AdaResNet [MYMT18] ResNet-12 56.88 £0.62 71.94+0.57 - - - -
Dynamics Few-Shot [GK18] 64-64-128-128  56.20+0.86  73.0 +0.64 - - - -
Activation to Parameter [QLSY18] WRN-28-10  59.60 +0.417 73.74+0.19" - - - -
R2D2 [BHTV19] 96-192-384-512 51.2+0.6 68.8 £ 0.1 65.3+0.2 79.4 £0.1 - -
Shot-Free [RBS19] ResNet-12 59.04 £ n/a 77.64 £ n/a 69.2 +n/a 84.7 £ n/a - -
TEWAM [QSL*19] ResNet-12 60.07 + n/a 75.90 + n/a 70.4 +n/a 81.3+n/a - -

TPN [LLP*19] ResNet-12 55.51+0.86 75.64+n/a - - - -

LEO [RRS"19] WRN-28-10 61.76 +0.08" 77.59 +0.12" - - - -

MTL [SLCS19] ResNet-12 61.20+1.80 7550 +0.80 - - - -
OptNet-RR [LMRS19] ResNet-12 61.41+061 77.88+0.46 726+0.7 84.3+05 40.5+0.6 57.6+0.9
MetaOptNet [LMRS19] ResNet-12 62.64 +0.61 78.63+0.46 72.0+0.7 84.2+05 41.1+06 55.3+0.6

Transductive Fine-Tuning [DCRS20] WRN-28-10 65.73+0.68 78.40+052 76.58+0.68 85.79+0.5 43.16+0.59 57.57+0.55
Distill-simple [TWK*20] ResNet-12 62.02+0.63 79.64 +0.44 715+0.8 86.0£0.5 426 +0.7 59.1+£0.6
Distill [TWK*20] ResNet-12 64.82+0.60 82.14+0.43 739+0.8 86.9 + 0.5 446 +£0.7 60.9 + 0.6

Ours (simple) WRN-28-4 58.12+1.19 720+0.99 6881+120 81.49+098 44.96+1.14 57.21+10.89
Qurs (Ir scheduling) WRN-28-4 6037125 7235+099 70.0+129 81.39+096 4342+1.0 5414+ 1.1

Ours (Ir scheduling + model selection) WRN-28-4 6127 +1.14 7474+076 7237+1.12 8294+0.89 4581 +1.27 56.85+1.30

Table: 1-shot and 5-shot classification performance on Mini-imageNet,

CIFAR-FS, and FC-100.
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Experimental evidence for NC2

We plot mi_nlly,(éi) - ﬂf(éj)” when training WRN-28-4 on CIFAR-FS.
1#]
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Empirical Results
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Figure: Within-class variation collapse of wide ResNet on CIFAR-FS with
varying number of source classes.
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Conclusions

@ First theoretical proof that learning embeddings with foundation
models works.

@ Small normalized variance implies good few-shot performance.

@ Theoretical and empirical evidence on the relations between NC and
transferability.
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Conclusions

@ First theoretical proof that learning embeddings with foundation
models works.

@ Small normalized variance implies good few-shot performance.

@ Theoretical and empirical evidence on the relations between NC and
transferability.

Some open questions

@ Can we get better transferability by explicitly enforcing neural
collapse?

@ Are there other structures that are favorable for adaptivity and
transferability ?

@ Can the analysis be extended beyond classification?
@ What about transfer between different modalities? Tasks?
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