Lattice QCD with Machine learning

Akio Tomiya (Assistant prof. in IPUT Osaka) akio_at_yukawa.kyoto-u.ac.jp

> Based on arXiv: arXiv: 2103.11965, 2205.08860 etc

Self-introduction Lattice QCD & Machine learning @ IPUT Osaka

What am I?

I am a particle physicist, working on lattice QCD. I want to apply machine learning on it.

My papers https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

Detection of phase transition via convolutional neural networks A Tanaka, A Tomiya Journal of the Physical Society of Japan 86 (6), 063001 Phase transition detection with NN

Evidence of effective axial U(1) symmetry restoration at high temperature QCD A Tomiya, G Cossu, S Aoki, H Fukaya, S Hashimoto, T Kaneko, J Noaki, ... Physical Review D 96 (3), 034509 Axial anomaly at T>0 with Mobius Domain-wall fermions

KAKENHI

PI: Grant-in-Aid for Transformative Research Areas (A)

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A)

Grant-in-Aid for Early-Career Scientists

CI: Grant-in-Aid for Scientific Research (C), etc

Biography

- 2015 : PhD in Osaka university
- 2015 2018 : Postdoc in CCNU (Wuhan, China)
- 2018 2021 : SPDR in Riken/BNL (New York, US)
- 2021 : Assistant prof. in IPUT Osaka

Phys + ML

Seminar series: Deep learning and physics

- <u>https://cometscome.github.io/DLAP2020/</u>
- Online seminar series since 2020
- Machine learning + Physics
- Thursday morning, bi-weekly

Intensive lecture series

- https://akio-tomiya.github.io/lectures4mlphys/
 - #1 An introduction to optimal transport (in Japanese)
 - Wako Riken (Hybrid)
 - Date:12 Jan (Thu) 13:30-17:00 JST
 - Akinori Tanaka (RIKEN-AIP)

Spring school for computational physics

- <u>https://hohno0223.github.io/comp_phys_spring_school2023/index.html</u>
- @ Okinawa
- Hybrid (we will support traveling fee)
- March 13(Mon)-15(Wed)
- High energy physics + condensed matter + ML + quantum computing, etc

Outline

- 1.What and why QCD/lattice QCD?
- 2. Lattice QCD + Machine learning
 - 1."Neural net = Smearing"

 $\frac{dU_{\mu}^{(t)}(n)}{dt} = \mathscr{G}^{\bar{\theta}}(U_{\mu}^{(t)}(n))$

Theoretical Physics Appropriate description depends on the scale

Introduction Particle physics = four fundamental forces + matters

- Gravity
 - Binding everything, mediated by graviton(?)
- The electromagnetic force
 - Binding nucleus and electrons, mediated by photon
- The weak force
 - Change particles, mediated by Z, W bosons
- The strong force (very strong)
 - Binding quarks, mediated by gluons

Akio Tomiya QCD: a fundamental theory of particles inside of nuclei

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

$$S = \int d^4x \left[-\frac{1}{2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (\mathrm{i}\partial + gA - m) \psi \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig[A_{\mu}, A_{\nu}]$$

 $|\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$

Expectation values with this are needed

- QCD is theory for the strong force and an extension of electro-magnetism
- QCD enables us to calculate (in principle):
 - Equation of state of neutron star, Tc
 - Scattering of quarks and gluons
 - Hadron spectrum (bound state energy of quarks)
- Strongly coupled quantum system
- Use lattice formulation + Monte-Carlo

Lattice path integral > 1000 dim, Trapezoidal int is impossible

$$S = \int d^4x \left[+\frac{1}{2} \operatorname{tr} F_{\mu\nu} F_{\mu\nu} + \bar{\psi} (\partial - \mathrm{i}gA + m) \psi \right]$$

$$Lattice regularization \qquad S[U, \psi, \bar{\psi}] = a^4 \sum_n \left[-\frac{1}{g^2} \operatorname{Re} \operatorname{tr} U_{\mu\nu} + \bar{\psi} (D + m) \psi \right] \quad \operatorname{cutoff} = a^{-1}$$

$$U_\mu = e^{\operatorname{aig} A_\mu} \in SU(3)$$
Both S give same expectation value for long range $\operatorname{Re} U_{\mu\nu} \sim \frac{-1}{2} g^2 a^4 F_{\mu\nu}^2 + O(a^6)$

Quantum expectation values = multi-dimensional integral (Path integral)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S} \mathcal{O}(U) = \frac{1}{Z} \int \mathcal{D} U e^{-S_{\text{gauge}}[U]} \det(D+m) \mathcal{O}(U)$$

$$= \frac{1}{Z} \int \underbrace{\mathcal{D} U e^{-S_{\text{eff}}[U]} \mathcal{O}(U)}_{\downarrow \downarrow} \qquad S_{\text{eff}}[U] = S_{\text{gauge}}[U] - \log \det(\mathcal{D}[U] + m)$$

$$= \prod_{n \in \{\mathbb{Z}/L\}^4} \prod_{\mu=1}^4 dU_{\mu}(n)$$

$$> 1000 \text{ dim. We cannot use Newton-Cotes type integral like Trapezoid, Simpson etc. We cannot control numerical error }$$

8

K. Wilson 1974

Introduction Monte-Carlo integration is available

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U e^{-S_{\text{eff}}[U]} \mathcal{O}(U) \qquad S_{\text{eff}}[U] = S_{\text{gauge}}[U] - \log \det(\mathbb{D}[U] + m)$$

Monte-Carlo: Generate field configurations with " $P[U] \propto e^{-S_{eff}[U]}$ ". It gives expectation values

HMC: Hybrid (Hamiltonian) Monte-Carlo De-facto standard algorithm

$$S(x, y) = \frac{1}{2}(x^2 + y^2 + xy)$$

Introduction Monte-Carlo integration is available

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} U e^{-S_{\text{eff}}[U]} \mathcal{O}(U) \qquad S_{\text{eff}}[U] = S_{\text{gauge}}[U] - \log \det(\mathbb{D}[U] + m)$$

Monte-Carlo: Generate field configurations with " $P[U] \propto e^{-S_{eff}[U]}$ ". It gives expectation values

Error of integration is determined by the number of sampling

$$\langle \mathcal{O} \rangle = \frac{1}{N_{\text{sample}}} \sum_{k}^{N_{\text{sample}}} \mathcal{O}[U_k] \pm O(\frac{1}{\sqrt{N_{\text{sample}}}})$$

Correlation between samples = inefficiency of calculation

Summary for now: long autocorrelation = inefficiency

$$\begin{split} \langle O[\phi] \rangle = \frac{1}{N} \sum_{k}^{N} O[\phi_{k}] \ \pm \ O(\frac{1}{\sqrt{N_{\text{indep}}}}) & \qquad \int_{0.1}^{1.0} \int_{0.8} \bar{\Gamma}(t) \ -HMC \\ N_{\text{indep}} = \frac{N_{\text{sample}}}{2\tau_{ac}} & \qquad \int_{0.2}^{0.0} \int_{0.4} \bar{\Gamma}(t) \ -HMC \\ \bar{\Gamma}(t) = \frac{1}{N-t} \sum_{k} (O[\phi_{k+t}] - \bar{O})(O[\phi_{k}] - \bar{O}) \sim e^{-t/\tau_{ac}} \end{split}$$

 τ_{ac} is given by an update algorithm (N. Madras et. al 1988)

- Autocorrelation time τ_{ac} quantifies similarity between samples
- τ_{ac} is algorithm dependent quantity
- If τ_{ac} becomes half, we can get doubly precise results in the same time cost

Can we make this mild using machine learning?

Introduction Neural net can make human face images

e e G person do	es not exist - Google × +				
\leftrightarrow \rightarrow C \cong goog	gle.com/search?q=person+does+not+exist&oq=person+does+&a 🟠 🦞 🎓	Θ:			
Apps 🏽 🛞 Akio TOMIY	(A 🝐 Google_drive 🧰 MIT-LAT 📮 Deep Learning an 🌈 Zenn プログラマ	**			
Google	person does not exist	×			
	Q すべて 🖬 画像 🗈 動画 🗉 ニュース 📀 地図 ∶もっと見る	設定			
	約 588,000,000 件 (0.43 秒)				
	thispersondoesnotexist.com ▼ このページを訳す <u> This Person Does Not Exist</u>				
	This Person Does Not Exist.				
他の人はこちらも検索					
	How does this person does not exist work?				
Who made this person does not exist?					

Introduction Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

Realistic Images can be generated by machine learning! Configurations as well? (configuration ~ images?)

ML for LQCD is needed

- Machine learning/ Neural networks
 - Data processing techniques for 2d image in daily life (pictures = pixels = a set of real #)
 - Neural network can generate images! (arpproximately)
- Lattice QCD is more complicated than pictures
 - 4 dimension
 - Non-abelian gauge d.o.f. and symmetry
 - Fermions
 - Exactness of algorithm is necessary
- Q. How can we deal with?

thispersondoesnotexist.com

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Configuration generation with machine learning is developing

Year	Group	ML	Dim.	Theory	Gauge sym	Exact?	Fermion?	Reference
2017	AT, Akinori Tanaka	RBM + HMC	2d	Scalar	-	No	No	arXiv: 1712.03893
2018	K. Zhou+	GAN	2d	Scalar	-	No	No	arXiv: 1810.12879
2018	J. Pawlowski +	GAN +HMC	2d	Scalar	-	Yes?	No	arXiv: 1811.03533
2019	MIT+	Flow	2d	Scalar	-	Yes	No	arXiv: 1904.12072
2020	MIT+	Flow	2d	U(1)	Equivariant	Yes	No	arXiv: 2003.06413
2020	MIT+	Flow	2d	SU(N)	Equivariant	Yes	No	arXiv: 2008.05456
2020	AT, Akinori Tanaka +	SLMC	4d	SU(N)	Invariant	Yes	Partially	arXiv: 2010.11900
2021	M. Medvidovic'+	A-NICE	2d	Scalar	-	No	No	arXiv: 2012.01442
2021	S. Foreman	L2HMC	2d	U(1)	Yes	Yes	No	
2021	AT+	SLHMC	4d	QCD	Covariant	Yes	YES!	This talk
2021	L. Del Debbio+	Flow	2d	Scalar, O(N)	-	Yes	No	
2021	MIT+	Flow	2d	Yukawa	-	Yes	Yes	
2021	S. Foreman, AT+	Flowed HMC	2d	U(1)	Equivariant	Yes	No but compatible	arXiv: 2112.01586
2021	XY Jing	Neural	2d	U(1)	Equivariant	Yes	No	
2022	J. Finkenrath	Flow	2d	U(1)	Equivariant	Yes	Yes (diagonalization)	arxiv: 2201.02216
2022	MIT+	Flow	2d, 4d	U(1), QCD	Equivariant	Yes	Yes	arXiv:2202.11712 +
2022	AT+	Flow	2d, 3d	Scalar		Yrs		

+...

16

LQCD + Machine learning How to deal gauge sym.

Neural network is a universal approximator of functions

Image classification, cats and dogs

Affine transformation + element-wise transformation

Fully connected neural networks

$$f_{\theta}(\overrightarrow{x}) = \sigma^{(l=2)}(W^{(l=2)}\sigma^{(l=1)}(W^{(l=1)}\overrightarrow{x} + \overrightarrow{b}^{(l=1)}) + \overrightarrow{b}^{(l=2)})$$

 θ represents a set of parameters: eg $w_{ij}^{(l)}, b_i^{(l)}, \cdots$ (throughout this talk!)

<u>Component of neural net: $l = 2, 3, \dots$ and $\overrightarrow{u}^{(1)} = \overrightarrow{x}$ </u>

$$\begin{cases} z_i^{(l)} = \sum_{j} w_{ij}^{(l)} u_j^{(l-1)} + b_i^{(l)} \\ u_i^{(l)} = \sigma^{(l)}(z_i^{(l)}) \end{cases}$$

Matrix product vector addition (w, b determined in the training)

element-wise (local) Non-linear transf. Typically σ ~ tanh shape

Neural network = (Variational) map between vector to vector

Neural network is a universal approximator of functions

Image classification, cats and dogs

Fact: neural network can mimic any function! (universal app. thm)

In this example, neural net mimics a map between image (10,000-dim vector) and label (2-dim vector)

Akio Tomiya Koji Hashimoto Deep Learning and Physics

Akio Tomiya

🖉 Springer

What is the neural networks? Convolution layer = trainable filter

Fact: If inputs are shifted to right, outputs are shifted to right

= translationally equivaliant (similar to covariance, operations just commute each other)

What is the neural networks? **Convolution layer = trainable filter**

Laplacian filter

Edge detection

2

4

2

1

2

1

Akio Tomiya

Fact: If inputs are shifted to right, outputs are shifted to right

= translationally equivaliant (similar to covariance, operations just commute each other)

Convolution neural network Training can be done with back propagation

Smearing

Eg.

Smoothing improves global properties

Coarse image

Smoothened image

Smearing

Eg.

Smoothing improves global properties

Coarse image

Numerical derivative is unstable

Numerical derivative is stable

Gauge configurations have gauge, translation, 90 deg rot symmetries

Gauge transformation on the lattice $U_{\mu}(n) \rightarrow g(n)U_{\mu}(n)g^{\dagger}(n+\mu) \qquad g(n) \in SU(3)$ $S[U] \rightarrow S[U]$

Smearing

Eg.

Smoothing improves global properties

Coarse image

Numerical derivative is unstable

Two types:

We want to smoothen gauge configurations with keeping gauge symmetry

APE-type smearing

Stout-type smearing

M. Albanese+ 1987 R. Hoffmann+ 2007 C. Morningster+ 2003

Smearing Smoothing with gauge symmetry, APE type

APE-type smearing

Covariant sum

$$U_{\mu}(n) \rightarrow U_{\mu}^{\text{fat}}(n) = \mathcal{N}\left[(1-\alpha)U_{\mu}(n) + \frac{\alpha}{6}V_{\mu}^{\dagger}[U](n)\right]$$

 $\mu \neq \nu$

 $V^{\dagger}_{\mu}[U](n) = \sum U_{\nu}(n)U_{\mu}(n+\hat{\nu})U^{\dagger}_{\nu}(n+\hat{\mu}) + \cdots \qquad V^{\dagger}_{\mu}[U](n)\&\ U_{\mu}(n) \text{ shows same transformation}$ $\rightarrow U_{u}^{\text{fat}}[U](n)$ is as well

 $\mathcal{M}[M] = \frac{M}{\sqrt{M^{\dagger}M}} \quad \text{Or projection}$

Normalization

Schematically,

In the calculation graph,

M. Albanese+ 1987

R. Hoffmann+ 2007

Smearing Smoothing with gauge symmetry, stout type

Stout-type smearing

$$\begin{split} U_{\mu}(n) &\to U_{\mu}^{\text{fat}}(n) = \mathrm{e}^{Q} U_{\mu}(n) & \text{Covariant sum} \\ &= U_{\mu}(n) + (\mathrm{e}^{Q} - 1) U_{\mu}(n) \end{split}$$

Q: anti-hermitian traceless plaquette

Akio Tomiya

C. Morningster+ 2003

This is less obvious but this actually obeys same transformation

Smearing Smearing decomposes into two parts

General form of smearing (covariant transformation)

$$\begin{cases} z_{\mu}(n) = w_1 U_{\mu}(n) + w_2 \mathscr{G}[U] & \text{Gauge covariant sum} \\ U_{\mu}^{\text{fat}}(n) = \mathcal{N}(z_{\mu}(n)) & \text{A local function} \end{cases}$$

Smearing \sim neural network with fixed parameter!

General form of smearing (covariant transformation)

 $\begin{cases} z_{\mu}(n) = w_1 U_{\mu}(n) + w_2 \mathscr{G}[U] & \text{Gauge covariant sum} \\ U_{\mu}^{\text{fat}}(n) = \mathscr{N}(z_{\mu}(n)) & \text{A local function} \end{cases}$

It has similar structure with neural networks,

Smearing

$$\begin{cases} z_i^{(l)} = \sum_{j} w_{ij}^{(l)} u_j^{(l-1)} + b_i^{(l)} & \text{Matrix product vector addition} \\ u_i^{(l)} = \sigma^{(l)}(z_i^{(l)}) & \text{element-wise (loc Non-linear transform trans$$

Actually, we can find a dictionary between them

AT Y. Nagai arXiv: 2103.11965

se (local) ransf.

Gauge covariant neural network = trainable smearing

AT Y. Nagai arXiv: 2103.11965

Akio Tomiya

Dictionary		(convolutional) Neural network	Smearing in LQCD	
	Input	Image (2d data, structured)	gauge config (4d data, structured)	
	Output	Image (2d data, structured)	gauge config (4d data, structured)	
	Symmetry	Translation	Translation, rotation(90°), Gauge sym.	
	with Fixed param	Image filter	(APE/stout) Smearing	
	Local operation	Summing up nearest neighbor with weights	Summing up staples with weights	
	Activation function	Tanh, ReLU, sigmoid,	projection/normalization in Stout/HYP/HISQ	
	Formula for chain rule	Backprop	"Smeared force calculations" (Stout)	Well-known
	Training?	Backprop + Delta rule	AT Nagai 2103.11965	

(Index i in the neural net corresponds to n & µ in smearing. Information processing with NN is evolution of scalar field)

Takeaway message

Gauge Covariant Neural networks = trainable smearing, training for SU(N) fields

Gauge covariant neural network = trainable smearing

Gauge covariant neural network = general smearing with trainable parameters *w*

$$U_{\mu}^{(l+1)}(n) \left[U^{(l)} \right] : \begin{cases} z_{\mu}^{(l+1)}(n) = w_{1}^{(l)} U_{\mu}^{(l)}(n) + w_{2}^{(l)} \mathscr{G}_{\bar{\theta}}^{(l)}[U] \\ \mathcal{N}(z_{\mu}^{(l+1)}(n)) \end{cases}$$

(Weight "w" can be depend on n and μ = fully connected like. Less symmetric, more parameters)

e.g.
$$U^{\text{NN}}_{\mu}(n)[U] = U^{(3)}_{\mu}(n) \left[U^{(2)}_{\mu}(n) \left[U^{(1)}_{\mu}(n) \left[U^{(1)}_{\mu}(n) \right] \right] \right]$$

Good properties: Obvious gauge symmetry. Translation, rotational symmetries. (Analogous to convolutional layer, this fully uses information of the symmetries)

$$U_{\mu}(n) \mapsto U_{\mu}^{\mathrm{NN}}(n) = U_{\mu}^{\mathrm{NN}}(n)[U]$$

Gauge covariant composite function:
 Input = gauge field, Output = gauge field

2. Parameters in the network can be trainable using ML techniques.

AT Y. Nagai arXiv: 2103.11965

Gauge covariant neural network Neural ODE of Cov-Net = "gradient flow"

arXiv: 1512.03385

Akio Tomiya

Neural ODE

arXiv: 1806.07366 (Neural IPS 2018 best paper)

Gauge covariant neural network Neural ODE of Cov-Net = "gradient flow"

 $\overrightarrow{u}^{(l-1)}$ $\overrightarrow{u}^{(l)}$ **ResNet** arXiv: 1512.03385 Continuum Layer Limit $d\overrightarrow{u}^{(t)}$ $-=\mathscr{G}(\overrightarrow{u}^{(t)})$ **Neural ODE** arXiv: 1806.07366 (Neural IPS 2018 best paper) $U^{(l)}$ $U^{(l+1)}$ Gauge-cov net $\mathscr{G}^{ar{ heta}}$ AT Y. Nagai arXiv: 2103.11965 Continuum Layer $dU^{(t)}_{\mu}(n)$ Limit Neural ODE $= \mathscr{G}^{\theta}(U^{(t)}_{\mu}(n))$ "Gradient" flow for Gauge-cov NN (not has to be gradient of S)

"Continuous stout smearing is the Wilson flow"

Akio Tomiya

2010 M. Luscher

Gauge covariant neural network Short summary

	Symmetry	Fixed parameter	Continuum limit of layers	How to Train
Conventional neural network	Convolution: Translation	Convolution: Filtering (e.g Gaussian/ Laplasian)	ResNet: Neural ODE	Delta rule and backprop Gradient opt.
Gauge cov. net AT Y. Nagai arXiv: 2103.11965	Gauge covariance Translation equiv, 90° rotation equiv	Smearing	"Gradient flow"	Extended Delta rule and backprop Gradient opt.
				Re-usable stout

 / Re-usable stout force subroutine
 (Implementation is easy & no need to use ML library)

Next, I show a demonstration

An application Self-learning HMC

Application for the staggered in 4d Problems to solve

arXiv: 2103.11965

Akio Tomiya

Our neural network enables us to **parametrize** gauge symmetric action covariant way. **It can be used in variational ansatz in gauge theory.**

e.g.
$$S^{NN}[U] = S_{plaq} \left[U^{NN}_{\mu}(n)[U] \right]$$
$$S^{NN}[U] = S_{stag} \left[U^{NN}_{\mu}(n)[U] \right]$$

Test of our neural network?

Can we mimic a different Dirac operator using neural net?

$$\begin{cases} \text{Target action} & S[U] = S_{g}[U] + S_{f}[\phi, U; m = 0.3], \\ \text{Action in MD} & S_{\theta}[U] = S_{g}[U] + S_{f}[\phi, U_{\theta}^{\text{NN}}[U]; m_{\text{h}} = 0.4], \end{cases} \end{cases}$$

Q. Simulations with approximated action can be exact?-> Yes! with SLHMC (Self-learning HMC)

SLHMC = **Exact algorithm with ML** SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

Akio Tomiya

Eom Metropolis Both use $H_{\rm HMC} = \frac{1}{2} \sum \pi^2 + S_{\rm g} + S_{\rm f}$

Non-conservation of H cancels since the molecular dynamics is reversible

Metropolis $H = \frac{1}{2} \sum \pi^{2} + S_{g} + S_{f}[U]$ Eom $H = \frac{1}{2} \sum \pi^{2} + S_{g} + S_{f}[U^{NN}[U]]$

Neural net approximated fermion action but <u>exact</u>

SLHMC works as an adaptive reweighting!

Application for the staggered in 4d Lattice setup and question

Target	Two color QCD (plaquette + staggered)	arXiv: 2103.11965
Algorithms	SLHMC, HMC (comparison)	
Parameter	Four dimension, L=4, $m = 0.3$, beta = 2.7, Nf=4 (r	non-rooting)
Target action Action in MD (for SLHMC)	$S[U] = S_{g}[U] + S_{f}[\phi, U; m = 0.3],$ $S_{\theta}[U] = S_{g}[U] + S_{f}[\phi, U_{\theta}^{NN}[U]; m_{h} = 0.4],$	For Metropolis Test

Observables Plaquette, Polyakov loop, Chiral condensate $\langle \overline{\psi} \psi \rangle$

Code Full scratch, fully written in Julia lang.

LatticeQCD.jl

AT+ (in prep)

Akio Tomiya

(But we added some functions on the public version)

Lattice QCD code We made a public code in Julia Language

What is julia? 1.Open source scientific language (Just in time compiler)

2. Fast as C/Fortran (sometime, faster), Productive as Python

3. Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)

4.Supercomputers support Julia

LatticeQCD.jl (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google colab) SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

1. Download Julia binary

<u>3 steps in 5 min</u>

2. Add the package through Julia package manager

3. Execute!

Details (skip) Results: Loss decreases along with the training

Loss function: $L_{\theta}[U] = \frac{1}{2} \left| S_{\theta}[U, \phi] - S[U, \phi] \right|^2$, ~ -log(reweighting factor)

Without training, $e^{-L} < 1$, this means that candidate with approximated action never accept.

After training, e^(-L) ~1, and we get practical acceptance rate!

Application for the staggered in 4d Results are consistent with each other

arXiv: 2103.11965

Akio Tomiya

Expectation value			
Observable	Value		
Plaquette	0.7025(1)		
Plaquette	0.7023(2)		
Polyakov loop	0.82(1)		
Polyakov loop	0.83(1)		
Chiral condensate	0.4245(5)		
Chiral condensate	0.4241(5)		
	Expectation value Observable Plaquette Plaquette Polyakov loop Polyakov loop Chiral condensate Chiral condensate		

Acceptance = 40%

Other architecture: Flow based sample algorithm

Related works Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d\phi_{x,y,z,t} e^{-S(\phi)} \mathcal{O}[\phi_{x,y,z,t}]$$

 $\tilde{\phi} = \mathscr{F}_{\tau}(\phi)$ Flow equation (change variable)

If the solution satisfies
$$S(\mathcal{F}_{\tau}(\phi)) + \ln \det(\text{Jacobian}) = \sum_{n} \tilde{\phi}_{n}^{2}$$
,

Flow based sampling algorithm Normalizing flow ~ Change of variables

Point: Make problem easier with change of variables (make the measure flat)

RHS is flat measure

$$\rightarrow$$
 We can sample like right eq.
$$\begin{cases} \xi_1 \sim (0, 2\pi) \\ \xi_2 \sim (0, 1) \end{cases}$$
We can reconstruct
a "field config" x, y
for original theory
like right eq.
$$\begin{cases} x = r \cos \theta & \theta = \xi_1 \\ y = r \sin \theta & r = \sqrt{-2 \log \xi_2} \end{cases}$$

A change of variable which $D\phi e^{-S[\phi]}$ makes flat = **Trivializing map**

Related works Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d\phi_{x,y,z,t} e^{-S(\phi)} \mathcal{O}[\phi_{x,y,z,t}]$$

 $\tilde{\phi} = \mathscr{F}_{\tau}(\phi)$ Flow equation (change variable)

If the solution satisfies
$$S(\mathscr{F}_{\tau}(\phi)) + \ln \det(\text{Jacobian}) = \sum_{n} \tilde{\phi}_{n}^{2}$$

 $\langle \mathscr{O} \rangle = \frac{1}{Z} \int \cdots \int \prod_{x \in 100} \prod_{y \in 100} \prod_{z \in 100} \prod_{t \in 100} d\tilde{\phi} \mathscr{O}[\mathscr{F}_{\tau}(\phi)] e^{-\sum \tilde{\phi}_{n}^{2}}$

It becomes Gaussian integral! Easy to evaluate!!

However, the Jacobian cannot evaluate easily, so it is not practical. Life is hard.

Related works

Flow based algorithm = neural net represented flow algorithm

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ϕ distributed according to $\tilde{p}_f(\phi)$. The mapping $f^{-1}(z)$ is constructed by composing inverse coupling layers g_i^{-1} as defined in Eq. (10) in terms of neural networks s_i and t_i and shown diagrammatically in (b). By optimizing the neural networks within each coupling layer, $\tilde{p}_f(\phi)$ can be made to approximate a distribution of interest, $p(\phi)$. MIT + Google brain 2019~

Train a neural net as a "flow" $\tilde{\phi} = \mathscr{F}(\phi)$ If it is well approximated, we can sample from a Gaussian It can be done "Normalizing flow" (Real Non-volume preserving map) Moreover, Jacobian is tractable!

Related works

Flow based algorithm = neural net represented flow algorithm

FIG. 1: In (a), a normalizing flow is shown transforming samples z from a prior distribution r(z) to samples ϕ distributed according to $\tilde{p}_f(\phi)$. The mapping $f^{-1}(z)$ is constructed by composing inverse coupling layers g_i^{-1} as defined in Eq. (10) in terms of neural networks s_i and t_i and shown diagrammatically in (b). By optimizing the neural networks within each coupling layer, $\tilde{p}_f(\phi)$ can be made to approximate a distribution of interest, $p(\phi)$. MIT + Google brain 2019~

Their sampling strategy

- → Sampling from Gaussian
- → Apply an inverse trivializing map (neural network)
- → QFT configurations + Tractable Jacobian (by even-odd strategy)
- → Metropolis-Hastings test (Detailed balance), exact!

Flow based sampling algorithm Flow based ML for QFT MIT + Deepmind + ...

Akio Tomiya

(Use left conf.)

(Use left conf.)

Normalizing flow in Julia Public code and improvement

GomalizingFlow.jl: A Julia package for Flow-based sampling algorithm for lattice field theory

Akio Tomiya

Faculty of Technology and Science, International Professional University of Technology, 3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan

Satoshi Terasaki

AtelierArith, 980-0004, Miyagi, Japan

Combinational-convolution for flow-based sampling algorithm

Akio Tomiya

International Professional University of Technology in Osaka Faculty of Technology and Science, International Professional University of Technology, 3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan akio@yukawa.kyoto-u.ac.jp

> Satoshi Terasaki AtelierArith 980-0004 Miyagi Japan s.terasaki@atelier-arith.jp

A public code for Flow-based sampling algorithm not only 2d but also 3d, 4d

Improvement of convolution for the flow has been reported in NurIPS2022 workshop

52

MLPhys Foundation of "Machine Learning Physics" Grant-in-Aid for Transformative Research Areas (A)

- 1.What and why QCD/lattice QCD?
 - 1. Problem: Long auto-correlation
- 2. Lattice QCD + Machine learning
 - 1.Trainable smearing + SLHMC = adaptive reweighting
 - 2.Flow-based sampling algorithm

$$\frac{dU_{\mu}^{(t)}(n)}{dt} = \mathscr{G}^{\bar{\theta}}(U_{\mu}^{(t)}(n)) =$$

