

Akio Tomiya (Assistant prof. in IPUT Osaka)

akio_at_yukawa.kyoto-u.ac.jp

Lattice QCD with Machine learning

U of Tokyo (IPI seminar), Dec 20, 2022

10:00am-

Based on arXiv:
arXiv: 2103.11965,
2205.08860 etc

https://www.phys.s.u-tokyo.ac.jp/about/17106/

https://twitter.com/TomiyaAkio

2

Self-introduction
Lattice QCD & Machine learning @ IPUT Osaka

Akio Tomiya

2015 : PhD in Osaka university

2015 - 2018 : Postdoc in CCNU (Wuhan, China)

2018 - 2021 : SPDR in Riken/BNL (New York, US)

2021 - : Assistant prof. in IPUT Osaka

My papers

Biography

Phase transition detection with NN

Axial anomaly at T>0 with Mobius Domain-wall fermions

What am I?
I am a particle physicist, working on lattice QCD.

I want to apply machine learning on it.

https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

https://cometscome.github.io/DLAP2020/

PI: Grant-in-Aid for Transformative Research Areas (A)

 Grant-in-Aid for Early-Career Scientists

CI: Grant-in-Aid for Scientific Research (C), etc

KAKENHI

Phys + ML

3

• https://cometscome.github.io/DLAP2020/

• Online seminar series since 2020

• Machine learning + Physics

• Thursday morning, bi-weekly

Seminar series: Deep learning and physics

• https://akio-tomiya.github.io/lectures4mlphys/

• #1 An introduction to optimal transport (in Japanese)

• Wako Riken (Hybrid)

• Date:12 Jan (Thu) 13:30-17:00 JST

• Akinori Tanaka (RIKEN-AIP)

Intensive lecture series

• https://hohno0223.github.io/comp_phys_spring_school2023/index.html

• @ Okinawa

• Hybrid (we will support traveling fee)

• March 13(Mon)-15(Wed)

• High energy physics + condensed matter + ML + quantum computing, etc

Spring school for computational physics

https://cometscome.github.io/DLAP2020/
https://akio-tomiya.github.io/lectures4mlphys/
https://hohno0223.github.io/comp_phys_spring_school2023/index.html

1.What and why QCD/lattice QCD?

2. Lattice QCD + Machine learning

1.“Neural net = Smearing”

Outline

4

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

5

Theoretical Physics
Appropriate description depends on the scale

Akio Tomiya

Condensed 
matter High energy phys String

10^[-8]m 10^[-15]m 10^[-24]m

Chemistry

10^[-7]m

Biology

10^[-5]m

10^[-4]m1cm = 1^[-2] m
Human
１m

Coins
1mm=10^[-3]m

I am interested in

6

Introduction
Particle physics = four fundamental forces + matters

Akio Tomiya

• Gravity

• Binding everything, mediated by graviton(?)

• The electromagnetic force

• Binding nucleus and electrons, mediated by photon

• The weak force

• Change particles, mediated by Z, W bosons

• The strong force (very strong)

• Binding quarks, mediated by gluons

7

Introduction
QCD: a fundamental theory of particles inside of nuclei

Akio Tomiya

QCD (Quantum Chromo-dynamics) in 3 + 1 dimension

Fμν = ∂μAν − ∂νAμ − ig[Aμ, Aν]

S = ∫ d4x[−
1
2

tr FμνFμν + ψ̄(i∂/ + gA/ − m)ψ]

|ψ(t)⟩ = e−iHt |ψ(0)⟩

• QCD is theory for the strong force and an extension
of electro-magnetism

• QCD enables us to calculate (in principle):

• Equation of state of neutron star, Tc

• Scattering of quarks and gluons

• Hadron spectrum (bound state energy of quarks)

• Strongly coupled quantum system

• Use lattice formulation + Monte-Carlo

Expectation values with this are needed

=
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U)

8

Lattice path integral > 1000 dim, Trapezoidal int is impossible

Akio Tomiya

= ∏
n∈{ℤ/L}4

4

∏
μ=1

dUμ(n) >1000 dim. We cannot use Newton–Cotes

type integral like Trapezoid, Simpson etc.

We cannot control numerical error

⟨𝒪⟩ =
1
Z ∫ 𝒟U𝒟ψ̄𝒟ψe−S𝒪(U)

S[U, ψ, ψ̄] = a4 ∑
n

[−
1
g2

Re tr Uμν + ψ̄(D/ + m)ψ]
Re Uμν ∼

−1
2

g2a4F2
μν + O(a6)

=
1
Z ∫ 𝒟Ue−Sgauge[U] det(D + m)𝒪(U)

S = ∫ d4x[+
1
2

tr FμνFμν + ψ̄(∂/ − igA/ + m)ψ]

Introduction

Uμ = eaigAμ ∈ SU(3)

Both S give same expectation value for long range

Lattice regularization cutoff = a−1

K. Wilson 1974

Imaginary time
t = − iτ

Quantum expectation values = multi-dimensional integral (Path integral)

Seff[U] = Sgauge[U] − log det(D/ [U] + m)

9

Monte-Carlo integration is available

Akio Tomiya

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with “ ”. It gives expectation valuesP[U] ∝ e−Seff[U]

⟨𝒪⟩ =
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

Introduction

S(x, y) =
1
2

(x2 + y2 + xy)

HMC: Hybrid (Hamiltonian) Monte-Carlo

De-facto standard algorithm

M. Creutz 1980

P[U]P[U]P[U]

10

Monte-Carlo integration is available

Akio TomiyaIntroduction
M. Creutz 1980

Error of integration is determined by the number of sampling

⟨𝒪⟩ =
1

Nsample

Nsample

∑
k

𝒪[Uk] ± O(
1

Nsample

)

サンプ サンプ サンプ→ → → …

U1 U2 U3

Monte-Carlo: Generate field configurations with “ ”. It gives expectation valuesP[U] ∝ e−Seff[U]

⟨𝒪⟩ =
1
Z ∫ 𝒟Ue−Seff[U]𝒪(U) Seff[U] = Sgauge[U] − log det(D/ [U] + m)

P[U]P[U]P[U]

11

Akio Tomiya

サンプルA サンプルB サンプルC→ → → …

ϕ1 ϕ2 ϕ3

Large τac means, such Monte-Carlo integration is inefficient

Correlation between samples = inefficiency of calculation

t

Introduction

e−t/τac

Γ̄(t)

Correlated Correlated

Slightly Correlated

Nindep =
Nsample

2τac

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

12

Summary for now: long autocorrelation = inefficiency

Akio Tomiya

• Autocorrelation time quantifies similarity between samples

• is algorithm dependent quantity

• If becomes half, we can get doubly precise results in the same time cost

τac

τac

τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

τac is given by an update algorithm (N. Madras et. al 1988)

Can we make this mild using machine learning?

Introduction

t

e−t/τac

Γ̄(t)

Nindep =
Nsample

2τac

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac

Akio Tomiya

13

Neural net can make human face images
Introduction

Akio Tomiya

14

Neural net can make human face images
Introduction

Realistic Images can be generated by machine learning!

Configurations as well? (configuration ~ images?)

Neural nets can generate realistic human faces (Style GAN2)

ML for LQCD is needed
• Machine learning/ Neural networks

• Data processing techniques for 2d image in
daily life (pictures = pixels = a set of real #)

• Neural network can generate images! 
(arpproximately)

• Lattice QCD is more complicated than pictures

• 4 dimension

• Non-abelian gauge d.o.f. and symmetry

• Fermions

• Exactness of algorithm is necessary

• Q. How can we deal with?
15

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Akio Tomiya

16

Introduction
Configuration generation with machine learning is developing
Year Group ML Dim. Theory Gauge sym Exact? Fermion? Reference
2017 AT, Akinori

Tanaka
RBM  

+ HMC
2d Scalar - No No arXiv: 1712.03893

2018 K. Zhou+ GAN 2d Scalar - No No arXiv: 1810.12879

2018 J. Pawlowski + GAN

+HMC

2d Scalar - Yes? No arXiv: 1811.03533

2019 MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072

2020 MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413

2020 MIT+ Flow 2d SU(N) Equivariant Yes No arXiv: 2008.05456

2020 AT, Akinori
Tanaka + SLMC 4d SU(N) Invariant Yes Partially arXiv: 2010.11900

2021 M. Medvidovic´+ A-NICE 2d Scalar - No No arXiv: 2012.01442

2021 S. Foreman L2HMC 2d U(1) Yes Yes No
2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021 L. Del

Debbio+ Flow 2d Scalar, O(N) - Yes No
2021 MIT+ Flow 2d Yukawa - Yes Yes
2021 S. Foreman,

AT+
Flowed 
HMC

2d U(1) Equivariant Yes No but compatible arXiv: 2112.01586

2021 XY Jing Neural
net

2d U(1) Equivariant Yes No
2022 J. Finkenrath Flow 2d U(1)
 Equivariant Yes Yes (diagonalization) arxiv: 2201.02216

2022 MIT+ Flow 2d, 4d U(1), QCD Equivariant Yes Yes arXiv:2202.11712 +

2022 AT+ Flow 2d, 3d Scalar Yrs
＋…

LQCD + Machine learning
How to deal gauge sym.

17

18

Introduction
Neural network is a universal approximator of functions

Akio Tomiya

f: Neural net

Images of “dog”

Images of “cat”

Flatten
⟹

0.000
0.000
0.8434
0.756
0.3456

⋮

Image is a vector

(this is 10,000 dimension)

10,000 dimension

2 dimension

Input

100x100

Image classification, cats and dogs

dog = (0
1) Label is 2 dim vector

(cat = (1, 0)t)

f(Image of dog) = (0.1
0.9)

cat = (1
0)

dog = (0
1)

19

Affine transformation + element-wise transformation

Akio Tomiya

fθ(⃗x) = σ(l=2)(W(l=2)σ(l=1)(W(l=1) ⃗x + ⃗b (l=1)) + ⃗b (l=2))
Fully connected neural networks

Neural network = (Variational) map between vector to vector

 represents a set of parameters: eg θ w(l)
ij , b(l)

i , ⋯

Introduction

(throughout this talk!)

z(l)
i = ∑

j

w(l)
ij u(l−1)

j + b(l)
i{

Component of neural net: and l = 2,3,⋯ ⃗u (1) = ⃗x

u(l)
i = σ(l)(z(l)

i)

Matrix product

vector addition

(w, b determined in  
the training)

element-wise (local)

Non-linear transf.
Typically σ ~ tanh shape

20

Introduction
Neural network is a universal approximator of functions

Akio Tomiya

f: Neural net

Images of “dog”

Images of “cat”

Flatten
⟹

0.000
0.000
0.8434
0.756
0.3456

⋮

Image is a vector

(this is 10,000 dimension)

Fact: neural network can mimic any function! (universal app. thm)

In this example, neural net mimics a map between 
 image (10,000-dim vector) and label (2-dim vector)

10,000 dimension

2 dimension

Input

100x100

Image classification, cats and dogs

dog = (0
1) Label is 2 dim vector

(cat = (1, 0)t)

f(Image of dog) = (0.1
0.9)

cat = (1
0)

dog = (0
1)

Mathematical Physics Studies

Akinori Tanaka
Akio Tomiya
Koji Hashimoto

Deep Learning
and Physics

Fit ansatz

21

What is the neural networks?
Convolution layer = trainable filter

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

Laplacian filter

Edge detection

(Discretization of)∂2

Fact: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operations just commute each other)

22

What is the neural networks?
Convolution layer = trainable filter

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

w11 w12 w13

w21 w22 w23

w31 w32 w33*

Convolution layer

Laplacian filter

Edge detection

Trainable filter

→
Edge detection
Smoothing
…

This can be any filter which helps feature extraction
but still transitionally equivariant!

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter

(Discretization of)∂2

(Gaussian filter)

Fact: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operations just commute each other)

23

Convolution neural network
Training can be done with back propagation

Akio Tomiya

w11 w12 w13

w21 w22 w23

w31 w32 w33

Translation

equivariant map

with trainable

parameters

cat = (1
0)

dog = (0
1)

G.A.

Pooling/

flatten

Dense

net

feed
L

loss function

quantifies

error of output

Feedback = training

(Steepest descent)

24

Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter

25

Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter

Gauge configurations have gauge, translation, 90 deg rot symmetries

Uμ(n) → g(n)Uμ(n)g†(n + μ) g(n) ∈ SU(3)

S[U] → S[U]

Gauge transformation on the lattice

26

Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations

with keeping gauge symmetry

APE-type smearing

Stout-type smearing
Two types:

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter

27

Smearing
Smoothing with gauge symmetry, APE type

Akio Tomiya

APE-type smearing

Uμ(n) → Ufat
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)]

V†
μ[U](n) = ∑

μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M

= + ∑
ν

α
6𝒩[]

Schematically,

V α /6
𝒩 [⋯] U(1)U Mult

Sum

(1 − α)

1 − α

In the calculation graph,

+

Or projection

M. Albanese+ 1987
R. Hoffmann+ 2007

& shows same transformationV†
μ[U](n) Uμ(n)

→ is as wellU fat
μ [U](n)

+

NormalizationCovariant sum

28

Smearing
Smoothing with gauge symmetry, stout type

Akio Tomiya

Stout-type smearing
Uμ(n) → Ufat

μ (n) = eQUμ(n)

: anti-hermitian traceless plaquetteQ

(eQ − 1)U UfatU +

= e

= Uμ(n) + (eQ − 1)Uμ(n)

()
= e(−1)+

C. Morningster+ 2003

This is less obvious but this actually obeys same transformation

Schematically,

In the calculation graph,

Covariant sum

29

Smearing
Smearing decomposes into two parts

Akio Tomiya

General form of smearing (covariant transformation)

zμ(n) = w1Uμ(n) + w2𝒢[U]

Ufat
μ (n) = 𝒩(zμ(n)){ A local function

Gauge covariant sum

30

Smearing
Smearing ～ neural network with fixed parameter!

Akio Tomiya

It has similar structure with neural networks,

AT Y. Nagai arXiv: 2103.11965

zμ(n) = w1Uμ(n) + w2𝒢[U]

Ufat
μ (n) = 𝒩(zμ(n)){ A local function

Actually, we can find a dictionary between them

General form of smearing (covariant transformation)

z(l)
i = ∑

j

w(l)
ij u(l−1)

j + b(l)
i{u(l)

i = σ(l)(z(l)
i)

Matrix product

vector addition

element-wise (local)

Non-linear transf.
Typically σ ~ tanh shape

Gauge covariant sum

31

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Dictionary

AT Y. Nagai arXiv: 2103.11965

(convolutional) 
Neural network Smearing in LQCD

Input Image 
(2d data, structured)

gauge config

(4d data, structured)

Output Image 
(2d data, structured)

gauge config

(4d data, structured)

Symmetry Translation Translation, rotation(90°),
Gauge sym.

Gauge sym

with Fixed param Image filter (APE/stout …) Smearing

Local operation Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function Tanh, ReLU, sigmoid, … projection/normalization
in Stout/HYP/HISQ

Formula for chain rule Backprop “Smeared force
calculations” (Stout)

Training? Backprop + Delta rule AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)

32

Gauge Covariant Neural networks
= trainable smearing, training for SU(N) fields

Takeaway message

33

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Gauge covariant neural network = general smearing with trainable parameters w

z(l+1)
μ (n) = w(l)

1 U(l)
μ (n) + w(l)

2 𝒢(l)
θ̄

[U]

𝒩(z(l+1)
μ (n)){U(l+1)

μ (n)[U(l)] :

UNN
μ (n)[U] = U(3)

μ (n)[U(2)
μ (n)[U(1)

μ (n)[Uμ(n)]]]
Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]
1. Gauge covariant composite function:

(Analogous to convolutional layer, this fully uses information of the symmetries)

(Weight “ ” can be depend on and = fully connected like. Less symmetric, more parameters)w n μ

AT Y. Nagai arXiv: 2103.11965

2. Parameters in the network can be trainable using ML techniques.

e.g.

Input = gauge field, Output = gauge field

34

Gauge covariant neural network
Training can be done with (extended) back propagation

Akio Tomiya

Gauge inv. loss function can be constructed by gauge invariant actions
AT Y. Nagai arXiv: 2103.11965

UNN
μ (n)[U]

Gauge covariant map with

trainable parameters

Feed to Dirac op D [UNN
μ (n)[U]]

Parametrized Dirac operator

Construct loops
W [UNN

μ (n)[U]]
Parametrized loop operators

(e.g. plaquette, Polyakov loop)

U UNN

Parametrized
action

Splaq [UNN]

Sferm [UNN]

w11 w12 w13

w21 w22 w23

w31 w32 w33

Translation

equivariant map

with trainable

parameters

cat = (1
0)

dog = (0
1)

G.A.

Pooling/

flatten

Dense

net

feed
L

feed
L

feed L

Invariant

loss function

Invariant

loss function

Translation equivariant =  
the image is shifted,

output image is also shifted

Usual neural network

Covariant neural networks Covariant

e.g.

= e()
w1 +w2 Q [UNN] L

Topological charge
cf. Gauge equivariant neural net (M Favoni+)

Covariantdistorted

35

Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢(⃗u (t))

ResNet

Neural ODE
(Neural IPS 2018 best paper)

arXiv: 1806.07366

arXiv: 1512.03385

Continuum

Layer

Limit

36

Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

U(l)
+

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢(⃗u (t))

ResNet

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

U(l+1)
𝒢θ̄

“Continuous stout smearing is the Wilson flow”

AT Y. Nagai arXiv: 2103.11965

Neural ODE

Gauge-cov net

Neural ODE

for Gauge-cov NN

arXiv: 1806.07366

arXiv: 1512.03385

2010 M. Luscher

(Neural IPS 2018 best paper)

Continuum

Layer

Limit

Continuum

Layer

Limit

“Gradient” flow 
(not has to be gradient of S)

37

Gauge covariant neural network
Short summary

Akio Tomiya

Symmetry Fixed parameter Continuum
limit of layers How to Train

Conventional
neural network

Convolution:
Translation

Convolution:
Filtering 

(e.g Gaussian/
Laplasian)

ResNet:

 Neural ODE

Delta rule and
backprop

Gradient opt.

Gauge cov. net 
AT Y. Nagai arXiv: 2103.11965

Gauge covariance

Translation equiv, 
90° rotation equiv

Smearing “Gradient flow”
Extended Delta

rule and
backprop

Gradient opt.

Next, I show a demonstration

Re-usable stout  
force subroutine

(Implementation is easy &

no need to use ML library)

An application
Self-learning HMC

38

39

Problems to solve

Akio TomiyaApplication for the staggered in 4d

Our neural network enables us to parametrize gauge symmetric action

covariant way. It can be used in variational ansatz in gauge theory.

arXiv: 2103.11965

SNN[U] = Splaq [UNN
μ (n)[U]]

SNN[U] = Sstag [UNN
μ (n)[U]]

Test of our neural network?
Can we mimic a different Dirac operator using neural net?

e.g.

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{
Q. Simulations with approximated action can be exact?

 -> Yes! with SLHMC (Self-learning HMC)

Artificial problem for HMC:

40

SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use

HHMC =
1
2 ∑ π2 + Sg + Sf

Self
Lerning
HMC

U U U U U U

U′ U

π

ϕ

π′

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965 and reference therein

SLHMC works as an adaptive reweighting!

41

Lattice setup and question

Akio Tomiya

Two color QCD (plaquette + staggered)

Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Plaquette, Polyakov loop, Chiral condensate ⟨ψ ψ⟩

Application for the staggered in 4d

Full scratch,

fully written in Julia lang.

Observables

(But we added some functions on the public version)

Parameter

Target

Code

Action in MD
(for SLHMC) Sθ[U] = Sg[U] + Sf[ϕ, UNN

θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3], For Metropolis Test

AT+ (in prep)

SLHMC, HMC (comparison)Algorithms

arXiv: 2103.11965

What is ?

42

We made a public code in Julia Language

Akio Tomiya

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover

Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

3 steps in 5 min

Lattice QCD code
AT & Y. Nagai in prep

1. Download Julia binary

2. Add the package through Julia package manager

3. Execute!

1.Open source scientific language (Just in time compiler)

2.Fast as C/Fortran (sometime, faster), Productive as Python

3.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)

4.Supercomputers support Julia

https://github.com/akio-tomiya/LatticeQCD.jl

: Laptop/desktop/PC-cluster/Jupyter (Google colab)(Official package)

https://github.com/akio-tomiya/LatticeQCD.jl

Akio Tomiya

43

Details (skip)
Results: Loss decreases along with the training

Lθ[U] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

arXiv: 2103.11965

~ -log(reweighting factor)

Without training, e^(-L)<< 1, this means that candidate with approximated action

never accept.

After training, e^(-L) ~1, and we get practical acceptance rate!

Training iteration history

Akio Tomiya

44

Application for the staggered in 4d
Results are consistent with each other

Acceptance = 40%

Expectation value

arXiv: 2103.11965

Other architecture:
Flow based sample algorithm

45

46

Related works
Gradient flow as a trivializing map

Akio Tomiya

If the solution satisfies ,S(ℱτ(ϕ)) + ln det(Jacobian) = ∑
n

ϕ̃2
n

Trivializing map for lattice QCD has been demanded…

arxiv 1904.12072, 2003.06413, 2008.05456

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕx,y,z,te−S(ϕ)𝒪[ϕx,y,z,t]

ϕ̃ = ℱτ(ϕ) Flow equation (change variable)

M. Luscher arXiv:0907.5491

47

Normalizing flow ~ Change of variables

Akio TomiyaFlow based sampling algorithm
Simplest example: Box Muller

∫
∞

−∞
dx∫

∞

−∞
dy e− 1

2 x2− 1
2 y2

=
1
2 ∫

2π

0
dθ∫

1

0
dz

θ = ξ1
r = −2 log ξ2

x = r cos θ

{
{y = r sin θ

RHS is flat measure

→We can sample like right eq.

Point: Make problem easier with change of variables (make the measure flat)

We can reconstruct

a “field config”

for original theory

like right eq.

x, y

A change of variable which makes flat = Trivializing map Dϕe−S[ϕ]

z = e− 1
2 (x2+y2)

tan θ = y/x{Change

of variables

ξ1 ∼ (0,2π)
ξ2 ∼ (0,1)

EasyOriginal integral: hard

48

Related works
Gradient flow as a trivializing map

Akio Tomiya

If the solution satisfies ,S(ℱτ(ϕ)) + ln det(Jacobian) = ∑
n

ϕ̃2
n

However, the Jacobian cannot evaluate easily, so it is not practical.

Life is hard.

Trivializing map for lattice QCD has been demanded…

arxiv 1904.12072, 2003.06413, 2008.05456

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕx,y,z,te−S(ϕ)𝒪[ϕx,y,z,t]

ϕ̃ = ℱτ(ϕ)

⟨𝒪⟩ =
1
Z ∫ ⋯∫ ∏

x∈100
∏

y∈100
∏

z∈100
∏

t∈100

dϕ̃𝒪[ℱτ(ϕ)]e−∑ ϕ̃2
n

Flow equation (change variable)

It becomes Gaussian integral! Easy to evaluate!!

M. Luscher arXiv:0907.5491

49

Flow based algorithm = neural net represented flow algorithm

Akio Tomiya

Train a neural net as a “flow”
If it is well approximated, we can sample from a Gaussian
It can be done “Normalizing flow” (Real Non-volume preserving map)
Moreover, Jacobian is tractable!

ϕ̃ = ℱ(ϕ)

arxiv 1904.12072, 2003.06413, 2008.05456

Related works

MIT + Google brain 2019~

50

Flow based algorithm = neural net represented flow algorithm

Akio Tomiya

→ Sampling from Gaussian  
→ Apply an inverse trivializing map (neural network) 
→ QFT configurations + Tractable Jacobian (by even-odd strategy)
→ Metropolis-Hastings test (Detailed balance), exact!

arxiv 1904.12072, 2003.06413, 2008.05456

Related works

MIT + Google brain 2019~

Their sampling strategy

51

Flow based ML for QFT

Akio TomiyaFlow based sampling algorithm

∫ Dϕe−S[ϕ]O[ϕ] ∝ ∏
i

∫ dφie−V(φi)J−1[φ]O[F[φ]]

EasyOriginal integral: hard

arXiv: 2101.08176 and ref therein

Vol

∏
i

e−V(φi)
Trivial theory

(no kinetic term, no topology)

“Cooling = change of variable”

via trained neural net

“un-trivializing map”

Reject

(Use left conf.)

Metropolis-Hastings with
e−S /e−V(φi)J−1[φ]

Flow-based sampling algorithm

Reject

(Use left conf.)

SampleSampleSampleSample

FlowFlowFlow Flow Flow

No auto-correlation

No correlation for points

No auto-correlation

Approx.correlation for points

Small auto-correlation

Correct correlations

MIT + Deepmind + …

52

Public code and improvement

Akio TomiyaNormalizing flow in Julia

https://github.com/AtelierArith/GomalizingFlow.jl

A public code for

Flow-based sampling

algorithm

not only 2d but also 3d, 4d

Improvement of

convolution for the flow

has been reported in

NurIPS2022

workshop

https://ml4physicalsciences.github.io/2022/https://arxiv.org/abs/2208.08903

http://www.apple.com

1.What and why QCD/lattice QCD?

1.Problem: Long auto-correlation

2. Lattice QCD + Machine learning

1.Trainable smearing + SLHMC = adaptive reweighting

2.Flow-based sampling algorithm

Summary

53

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n)) =

54

