U of Tokyo (IPl seminar), Dec 20, 2022 https://www.phys.s.u-tokyo.ac.jp/about/17106/
10:00am-

Lattice QCD with Machine learning

Akio Tomiya (Assistant prof. in IPUT Osaka) f- -

akio_at_yukawa.kyoto-u.ac.jp



https://twitter.com/TomiyaAkio

Self-introduction
Lattice QCD & Machine learning @ IPUT Osaka

g(,f \W S\ What am 1?
Bl LN \ | am a particle physicist, working on lattice QCD.

| want to apply machine learning on it.

My papers https://scholar.google.co.jp/citations?user=LKVqgy_wAAAAJ

Detection of phase transition via convolutional neural networks
A Tanaka, A Tomiya o _ .
Journal of the Physical Society of Japan 86 (6), 063001 Phase transition detection with NN

Evidence of effective axial I/(1) symmetry restoration at high temperature QCD
A Tomiya, G Cossu, S Aoki, H Fukaya, S Hashimoto, T Kaneko, J Noaki, ...

Physical Review D 96 (3), 034509, . . . .
! ( ,&xml anomaly at T>0 with Mobius Domain-wall fermions
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MLPhYs Foundation of "Machine Learning Physics'
for Transformative Research Areas (A)

Phys + ML

Seminar series: Deep learning and physics
https://cometscome.qgithub.io/DLAP2020/

Online seminar series since 2020

Machine learning + Physics

Thursday morning, bi-weekly

Intensive lecture series
https://akio-tomiya.github.io/lecturesdmliphys/

e #1 An introduction to optimal transport (in Japanese)
e Wako Riken (Hybrid)

e Date:12 Jan (Thu) 13:30-17:00 JST

e Akinori Tanaka (RIKEN-AIP)

Spring school for computational physics
https://hohno0223.github.io/comp phys spring school2023/index.html
@ Okinawa
Hybrid (we will support traveling fee)
March 13(Mon)-15(Wed)
High energy physics + condensed matter + ML + quantum computing, etc
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https://cometscome.github.io/DLAP2020/
https://akio-tomiya.github.io/lectures4mlphys/
https://hohno0223.github.io/comp_phys_spring_school2023/index.html

Outline

1.What and why QCD/lattice QCD?
dU(n)

dt

2. Lattice QCD + Machine learning

= G9U(n))

1.“Neural net = Smearing”



Theoretical Physics

Appropriate description depends on the scale
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Introduction

down strange bottom photon
J J J J

=0.511 MeV/c? =105.66 MeVic? =1.7768 GeV/c? =91.19 GeVi/c? m
-1 -1 -1 0
- @ [® @ || @ |3
| electron muon tau Zboson | Lo
\ \ I\ _ O3
2] i 7
Z <1.0 eVie? <0.17 MeVic? <18.2 =80.433 GeVic? m 8
O |o v 0 v 0 v 1 ‘ O
14, ? |1 w (Z a m
lo_' ) electron / muon / tal 3 g
(1]
1 | neutrino )| neutrino )| neut Wboson ) oY

e Gravity
* Binding everything, mediated by graviton(?)
* The electromagnetic force
 Binding nucleus and electrons, mediated by photon
* The weak force
e Change particles, mediated by Z, W bosons
 The strong force (very strong)
 Binding quarks, mediated by gluons



Introduction

Akio Tomiya

QCD: a fundamental theory of particles inside of nuclei

7~ QCD (Quantum Chromo-dynamics) in 3 + 1 dimension seerermsmwrw,

|y (r)) = g1 |y (0)) Expectation values with this are needed

1 :
S = Jd“x[ — Etr F,F"+ y?(i@ + gA — m)l//] }

F, =0,A,—0,A,—iglA,A)

QCD is theory for the strong force and an extension
of electro-magnetism

QCD enables us to calculate (in principle):

e Equation of state of neutron star, Tc

e Scattering of quarks and gluons

e Hadron spectrum (bound state energy of quarks)
Strongly coupled quantum system

Use lattice formulation + Monte-Carlo




Introduction

Lattice path integral > 1000 dim, Trapezoidal int is impossible

K. Wilson 1974

1 _ .
Imeginery time 5= Id4x[ Etr FﬂvFﬂv + l/f(") —1gA + m)l//]

I =—17

Lafttice regularization

U, =" e SU3)

1
SIU, w,yp] = a42 [— ?Re r U, + l/'/(D + m)l//] cutoff = a™!

—1
Both S give same expectation value for long range Re U, ~ nga“ij + O(a®)

Quantum expectation values = multi-dimensional integral (Path integral)

1
(0) = £ZU91/791//6‘S@(U) = j@Ue Sengel Ul det(D + m)O(U)

Nl*—* NI

[
|

9 Ue V1o U) SutlU] = SyugelU1 — log det(D[U] + m)

H HdUM(n) >1000 dim. We cannot use Newton-Cotes

ne{Z/L}* p=1 type integral like Trapezoid, Simpson etc.
We cannot control numerical error



Introduction
Monte-Carlo integration is available
(0) = j@ Ue>V10(U) Sl U1 = Spaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P[U] « e >rlV1 |t gives expectation values

HMC: Hybrid (Hamiltonian) Monte-Carlo ]
De-facto standard algorithm £

1
S(x,y) = 5(362 + y2 + xy)




Introduction

Monte-Carlo integration is available

M. Creutz 1980

1 —Setl U]
(@)zE DUe™“10(U) SeilU1 = Sqaugel U1 — log det(D[U] + m)

Monte-Carlo: Generate field configurations with “P[U] « e >rlV1 |t gives expectation values




Introduction

Correlation between samples = inefficiency of calculation

| 1 2 10|
(O[¢]) = — ) Olgh] + O )
N ” N. & 06
indep S 04
. N, sample ;)Zf):
]Vindep o 2T 0 10 20 30 40 t
L) =— Z (Olyy] — O)Olhy] — 0) ~ ™"

‘ Sﬂ g[hﬁt @[F‘[F@ @{t@@] -
Large Tac Means, such Monte-Carlo mtegratlon Is Inefficient



Introduction

Summary for now: long autocorrelation = inefficiency

<0[¢]>—12N‘,0[¢]+0< L
=3y 20l =

]Vindep
N . N, sample
indep — ZTac
L(f) = —— Z (Ol — O)(Olgh] — O) ~ e~

T,c is given by an update algorithm (N. Madras et. al 1988)

e Autocorrelation time 7. quantifies similarity between samples
e 7,.Is algorithm dependent quantity

o If 7,. becomes half, we can get doubly precise results in the same time cost

Can we make this mild using machine learning?



Akio Tomiya

Introduction

Neural net can make human face images

0@ G person does not exist - Goog'© X +

C & google.com/search?q=person+does+not+exist&og=person+does+&a.. ¥ ¥ # O

3! Apps & Akio TOMIYA & Google drive [l MIT-LAT [Ej Deepleamingan.. / Zenn| 7O457%... »
i {
GQ . g|€ person does not exist X 4
QAIRT BDEk ODHE B=-2-2 QHE :H-5tR3 0

#9 588,000,000 &+ (0.43 #)

thispersondoesnotexist.com v ZDNX—IJ%ZRT

This Person Does Not Exist
This Person Does Not Exist.

DA IESHRER

How does this person does not exist work?

Who made this person does not exist?



Introduction

Neural net can make human face images

Neural nets can generate realistic human faces (Style GAN2)

o @ [ This Person Does Not Exist x +
“— C’k & thispersondoesnotexist.com r VY RO
Y Apps & Akio TOMIYA & Google drive ' MIT-LAT B Deep Learning an... Jr Zenn | 707 37..

T =

Realistic Images can be generated by machine learning!
Configurations as well? (configuration ~ images?)



ML for LQCD is needed

e Machine learning/ Neural networks

e Data processing techniques for 2d image Iin
daily life (pictures = pixels = a set of real #)

* Neural network can generate images!
(arpproximately)

e Lattice QCD is more complicated than pictures
e 4 dimension
e Non-abelian gauge d.o.f. and symmetry
e Fermions

e Exactness of algorithm is necessary

® Q_ HOW can we deal W|th? http://www.physics.adelaide.edu.au/theory/staff/leinweber/Visual QCD/QCDvacuum/

15



Introduction

Akio Tomiya

Configuration generation with machine learning is developing

Year | Group ML | Dim. | Theory | Gaugesym | Exact? Fermion? Reference
2017 | AT, Akinori +RE.\'>|An 2d Scalar - No No arXiv: 1712.03893
2018 | K. Zhou+ | GAN 2d Scalar - No No arXiv: 1810.12879
2018 | J. Pawlowski + f_ﬁ/’l\'n 2d Scalar - Yes? No arXiv: 1811.03533
2019| MIT+ Flow 2d Scalar - Yes No arXiv: 1904.12072
2020| MIT+ Flow 2d U(1) Equivariant Yes No arXiv: 2003.06413
2020| MIT+ Flow 2d SU(N) | Equivariant Yes No arXiv: 2008.05456
2020| AL Aot G| MC | 4d SU(N) | Invariant Yes Partially arXiv: 2010.11900
2021 | M. Medvidovic+ | A-N|CE 2d Scalar - No No arXiv: 2012.01442
2021 | S. Foreman | L2HMC 2d U(1) Yes Yes No

2021 AT+ SLHMC 4d QCD Covariant Yes YES! This talk
2021| LDel | Flow 2d  |Scalar, O(N) - Yes No

2021 MIT+ | Flow | 2d | Yukawa - Yes Yes

2021 | S Foreman, Flljaltlxgd 2d U(1) | Equivariant Yes No but compatible | arXiv: 2112.01586
2021| XY Jing Ngg:al 2d UQ) Equivariant Yes No

2022 | J. Finkenrath | Flow 2d U(1) Equivariant Yes Yes (diagonalization) arxiv: 2201.02216
2022 MIT+ Flow | 2d,4d | U(1), QCD | Equivariant Yes Yes arXiv:2202.11712 +
2022 AT+ Flow 2d, 3d Scalar Yrs

+ ...




LQCD + Machine learning
How to deal gauge sym.



Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

100x100 (0.000
_ £ Flaten | (0.8434 | IMage is a vector d _ Label is 2 dim vector
- M 0.756 | (this is 10,000 dimension) 1 (cat = (1, O)Y
0.3456
\ i
d0§= <O> 0.1
110,000 dimension f: Neural net : f(Image of dog) = ( ' >
’ Input 0.9
e . .
‘. . 2 dimension
E Images of “dog” » » .
o _aa=n cat = <1>
|'- = » \0
B S

Images of “cat”




Akio Tomiya

Introduction

Affine transformation + element-wise transformation

Fully connected neural networks
() = 6EDWEDGED (W=D 4 p (=D)) 4 p (=)

ré’ represents a set of parameters: eg wg), bl.(l), .+« (throughout this talk!)

Component of neural net: [ = 2.3.--- and u) =7 .
Matrix product

) N (1—1 [y Vector addition
Zl-( ) = Wl§- )I/tj( ) + bi( . (w, b determined in
j the training)
D) — (D) element-wise (local)
W= (Zi ) Non-linear transf.

Typically o ~ tanh shape

Neural network = (Variational) map between vector to vector




Introduction

Neural network is a universal approximator of functions

Image classification, cats and dogs

100x100 (0.000 )
0.000 | 0 | |
Flaten | (0.8434 | IMage is a vector d _ Label is 2 dim vector
0.756 | (this is 10,000 dimension) 1 (cat = (1, 0)Y
0.3456
L)
dog =
$10,000 dimension f: Neural net ¥ <1> f(Image of dog) = <001>
’ Input 0.9
.4 . 2 dimension
N Images of “dog” .
S ia=- cat = (1>
|'- — > 0
TR F|t ansatz

Images of “cat”

Fact: neural network can mimic any function! (universal app. thm)

Koji Hashimoto
Deep Learning

In this example, neural net mimics a map between and Physics
image (10,000-dim vector) and label (2-dim vector)




What is the neural networks?

Convolution layer = trainable filter

Filter on image

Laplacian filter

0|1]0
>I< 11-2] 1 — Edge detection
0|10

(Discretization of 0°)

Fact: If inputs are shifted to right, outputs ar shifted to right

= translationally equivaliant (similar to covariance, operations just commute each other)




What is the neural networks?

Convolution layer = trainable filter

Filter on image

Laplacian filter

O] 1|0
>I< 11-2] 1 — Edge detection
01110

(Discretization of 0°)

Fact: If inputs are shifted to right, outputs ar shifted to right

= translationally equivaliant (similar to covariance, operations just commute each other)

Convolution layer Fukushima, Kunihiko (1980)
_ Zhang, Wei (1988) + a lot!

Trainable filter

Edge deteCtiOn Gaussian filter
W11 (W12 | W13 | e

Smoothin LT
W21 | W22 | W23 (Gaussian Tilter) 16 —
W31 W32 | W33

This can be any filter which helps feature extraction

but still transitionalli eiuivariant!



Convolution neural network

Training can be done with back propagation

loss function
quantifies
error of output

W11 | W12 [ W13

W21 | W22 [ W23

—_—) —>
W31 | W32 | W33 G.A. feed L
B Pooling/

Translation | flatten
equivariant map
with trainable

parameters

.....
ke,
......
.............................
------

.
.
.
*
-------------
___________
----------
- an®
L] -
L] s
L] s
L] s
.....
............
nnnnnnnnnnnnnnnnn




Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

»
-

Gaussian filter

Numerical derivative is unstable Numerical derivative is stable




Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

-
-

Gaussian filter ‘

Numerical derivative is unstable Numerical derivative is stable

Gauge configurations have gauge, translation, 90 deg rot symmetries

g(n) € SUC)




Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations
with keeping gauge symmetry

APE-type smearing M. Albanese+ 1987
Two types: R. Hoffmann+ 2007
Stout-type smearing C. Morningster+ 2003



Smea ring Akio Tomiya

Smoothing with gauge symmetry, APE type

M. Albanese+ 1987
APE_type smearing R. Hoffmann+ 2007

Covariant sum Normalization

M
fat — a T — i i
U’u(n) — U’ua (n)=N [(1 — a)UM(n) + gVﬂ[U](n)] N [M] \/W Or projection
VZ[U](H) = Z Uy(n) Uﬂ(n + D) Uj(n + )+ - V;[U](n)& U, (n) shows same transformation
UFv *U;at[U](n) is as well
Schematically,

— =N [o-o—>—+iZF1+14 ]

In the calculation graph,

H{E ()




Akio Tomiya

Smearing

Smoothing with gauge symmetry, stout type

Stout-type smearing
U ﬂ(n) - U ;at(n) — GQU ﬂ(n) Covariant sum

= U,(n) + (2 — DU, (n)

(: anti-hermitian traceless plaquette
This is less obvious but this actually obeys same transformation

/
U [(eQ - 1)U}€L Ufat

C. Morningster+ 2003

\ 4 \ 4

Schematically,

AN
7

|
o

[
ANV
\
—
ANV

In the calculation graph,




Smea ring Akio Tomiya

Smearing decomposes into two parts

General form of smearing (covariant transformation)

Zﬂ(n) = W Uﬂ(”l) +w,S[U]  Gauge covariant sum

U/Eat(n) = N (z,(n)) A local function




Smea ring Akio Tomiya

Smearing ~ neural network with fixed parameter!

. i ] AT Y. Nagai arXiv: 2103.11965
General form of smearing (covariant transformation)

Z,,,(n) = W Uﬂ(”l) +w,S[U]  Gauge covariant sum

U;at(n) = N (z,(n)) A local function

It has similar structure with neural networks,

(D _— (D, ,(-1) (I) Matrix product
Zi o Wij uj T bi vector addition

j .
D _ (Do element-wise (local)
l/tl.( ) = 0( )(Zi( )) Non-linear transf.
Typically o ~ tanh shape

Actually, we can find a dictionary between them



Gauge covariant neural network

= trainable smearing

Dictionary

(convolutional)
Neural network

Akio Tomiya

AT Y. Nagai arXiv: 2103.11965

Smearing in LQCD

Inout Image gauge config
P (2d data, structured) (4d data, structured)
Image gauge config
Qi (2d data, structured) (4d data, structured)
Symmetry Translation Translation, rotation(90°),
Gauge sym.
with Fixed param Image filter (APE/stout ...) Smearing

Local operation

Summing up nearest
neighbor with weights

Summing up staples
with weights

Activation function

Tanh, RelLU, sigmoid, ...

projection/normalization
in Stout/HYP/HISQ

Formula for chain rule

Backprop

“Smeared force
calculations” (Stout)

Training?

Backprop + Delta rule

AT Nagai 2103.11965

Well-known

(Index i in the neural net corresponds to n & p in smearing. Information processing with NN is evolution of scalar field)



Takeaway message

Gauge Covariant Neural networks
= trainable smearing, training for SU(N) fields

32



Gauge Covariant neural network Akio Tomiya

= trainable smearing AT Y. Nagai arXiv: 2103.11965

Gauge covariant neural network = general smearing with trainable parameters w

2"y = wPUP () + wPEP U]
U(’“)(n)[U(l)] . 1 2 0
p :
N (Z,EZH)(H))

(Weight “w” can be depend on n and u = fully connected like. Less symmetric, more parameters)

o UNNW[U] = UP(n) | UP(n) U}t”(n)[Uﬂ(n)]

Good properties: Obvious gauge symmetry. Translation, rotational symmetries.

U, (n) = UNNn) = UNN(m)[ U]

1. Gauge covariant composite function:
Input = gauge field, Output = gauge field

2. Parameters in the network can be trainable using ML techniques.



Gauge Covariant neural network Akio Tomiya

Training can be done with (extended) back propagation

AT Y. Nagai arXiv: 2103.11965
Gauge inv. loss function can be constructed by gauge invariant actions

Usual neural network

W11 | W12 | W13 Invariant
oo <0> loss function
W21 | Wa2 | Was 1
— — —
W31 | W32 | W33 G.A. Dense feed L
ll Pooling/ net = (5)

Translation | flatten
equivariant map

with trainable /

parameters Translation equivariant =

the image is shifted,
output image is also shifted
Parametrized Invarian_t
Covariant neural networks
D |UNNWU]| — Sgerm | UMY —> L
- ov n ferm
P O 2C feed
prsdl, e arametrized Dirac operator
UNN(”)[U] M P trized Dirac op
> -
C

e sy
- i : r"Cz‘/o Covariant 1 [U NN]
BT e - s NN / p aq feed
w e 2
_ W1{3+W2{:3 Parametrized loop operators Q [U ] L
# — (e >+ (e.g. plaquette, Polyakov loop)  Topological charge

cf. Gauge equivariant neural net (M Favoni+)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

-
' du' ) |
Neural ODE — cg( U ) arXiv: 1806.07366

dl. (Neural IPS 2018 best paper)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

v dﬁ’(l‘)

Neural ODE — ?(7(0) arXiv: 1806.07366
d A (Neural IPS 2018 best paper)

Gauge—cov net U(l) ( é U(H'l) AT Y. Nagai arXiv: 2103.11965
l Continuum L ?

Neural ODE U,u (n) _ ?é U(t) “Gradient” flow
for Gauge-cov NN dt — ( J7; (I”l)) (not has to be gradient of S)

“Continuous stout smearing is the Wilson flow”

2010 M. Luscher




Akio Tomiya

Gauge covariant neural network

Short summary

: Continuum :
Symmetry Fixed parameter limit of layers How to Train
Convolution: Delta rule and
Conventional Convolution: Filtering ResNet: hackoro
neural network Translation (e.g Gaussian/ Neural ODE KPTOP
. Gradient opt.
Laplasian)

Gauge covariance Extended Delta

Gauge cov. net - : : « : . rule and
ATY. Nogai arXiv: 2103.11965 Translatlgn equ, Smearing Gradient flow backprop
90° rotation equiv /éradient opt.

/Re—usable stout
force subroutine
(Implementation is easy &
no need to use ML library)

Next, | show a demonstration



An application
Self-learning HMC



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965
Our neural network enables us to parametrize gauge symmetric action

covariant way. It can be used In variational ansatz in gauge theory.

eq SNN[UT = 8 e | UNSOOIU]

SNN[UT = S,

UNmU]

tag

Test of our neural network?

Can we mimic a different Dirac operator using neural net?
Artificial problem for HMC:
Target action  S[U] = Sg[U] + Sf[Cb, Uim = 0-3],

ActioninMD  SplU1 = S, |U| + S¢[p, Up™[UT; my, = 0.4],

Q. Simulations with approximated action can be exact?
-> Yes! with SLHMC (Self-learning HMC)



SL MC = Exact algorithm with ML *°™"

SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

m Metropolis

Both use

1
HHMC=EZnZ+Sg+Sf

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis E

Metropolis

1
— E: 2
H—E v/ +Sg+Sf[U]

1
— 2 NN
H_EZn + S+ STUNNUT]

Neural net approximated
fermion action but exact

Metropolis &

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Lattice setup and question

arXiv: 2103.11965

Target Two color QCD (plaguette + staggered)
Algorithms SLHMC, HMC (comparison)
Parameter Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Target action SIU] = Sg[U] + Sf[éb, Uim = 0-3],

For Metropolis Test

Action in MD _ NN : _

Observables Plaqguette, Polyakov loop, Chiral condensate (1/71//)

Code Full scr.atch,. , ﬁl_attlceucndl AT+ (in prep)

fU”y written in Julia lang' (But we added some functions on the public version)



Lattice QCD code

We made a public code in Julia Language

[ What iSjulié? 1.0pen source scientific language (Just in time compiler)
2.Fast as C/Fortran (sometime, faster), Productive as Python

3.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)
_ 4.Supercomputers support Julia y

(ﬁ LatticeQCD.jl (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google Colab)\

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover
Domain-wall/Measurements (Now updating to v1.0, MPI ver is ready)

-

1. Download Julia binary A
3 steps in 5 min 2. Add the package through Julia package manager
\_ 3. Execute! Y,

https://github.com/akio-tomiya/LatticeQCD. ||

SU(3), Quenched, L=4"4, Heatbath

065
o060} 6
§ 055} | 4
g 050
o 045}/ 2
040

0
0.450.500.550.600.650.70 5 10 15 20 25 00 01 02 03 04 05 06
Plaguette MC time |Polyakov loop|

FFFFFRFFFF X
&

O N B OO

Polyakov loop 53
g 05 [ 01} oo 82
9 04 ‘ [/ 00 o © ©° ® >
) [ [ 1. ° ® o1
. > | N 0.1 o° X
rameters in no time. Qo3 AT £ 02 ° Q of!
'''''''''''''''''''''''''''''''''''' S o2t | ! 0313, g° ©
" = . = A ° Q-1 |
S |/ 04| o0 &
Q01| 05 .. o |
e < 2|

! fol
5 10 15 20 25 -0.10.0 0.1 02 0304 05 5 10 15 20 25
MC time Re MC time



https://github.com/akio-tomiya/LatticeQCD.jl

Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

2) arXiv: 2103.11965

Loss function: [ [U] = 5 SolU, @1 — SIU, ¢1| , ~ -log(reweighting factor)

— mp = 0.4

e e
0 20 40 60 80 100
Training iteration history

Without training, e”(-L)<< 1, this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get practical acceptance rate!




Application for the staggered in4d *“~*™

Results are consistent with each other

2500 1

2000 1

1500 1

Count

1000 - ;

500 - ,

0.70
Plaquette

3000
25001 '

+ 2000 1 |

C

3

3 1500
10001

500 -

0

0.38 0.40 0.42

0.44 0.46

Chiral condensate

0.48

0.50

arXiv: 2103.11965

| HMC |
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HMC Plaquette 0.7025(1)
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SLHMC  Chiral condensate 0.4241(5)
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Other architecture:
Flow based sample algorithm
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Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

)= %[ [ H H H H dipy, € POy, ]

x€100 ye100 ze100 €100

~

¢ = F T(Cb) Flow equation (change variable)

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z 45721 ,

n

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456



Flow based sampling algorithm

Normalizing flow ~ Change of variables

Simplest example: Box Muller 7 = e—%(x2+y2)

Change {tan 0=vylx
of variables

O 0 27 1
1.2 1.2 1

[ de dy e 2% 777 =_[ d@JdZ
—00 =00 2 )y 0
Original integral: hard Easy

Point: Make problem easier with change of variables (make the measure flat)

RHS is flat measure 51 ~ (09271-)
—\We can sample like right eq. 52 ~ (O, 1)

We can reconstruct X = 7 COS 6 0 = 51

a “field config” x,y
for original theory

like right eq. )’ = r Sin 9 r = \/_2 log 52

A change of variable which D¢ge =Sl makes flat = Trivializing map




Related WO rks Akio Tomiya

Gradient flow as a trivializing map

Trivializing map for lattice QCD has been demanded...

)= %[ [ H H H H dipy, € POy, ]

x€100 ye100 ze100 r€100

~

¢ = F T(Cb) Flow equation (change variable)

If the solution satisfies S(F (¢)) + In det(Jacobian) = Z qlg,zl ,

o= [[ T T1 IT T o5+

x€100 ye100 z&100 r€100

It becomes Gaussian integral! Easy to evaluate!!

However, the Jacobian cannot evaluate easily, so it is not practical.
Life is hard.

M. Luscher arXiv:0907.5491
arxiv 1904.12072, 2003.06413, 2008.05456



Related works

Akio Tomiya

Flow based algorithm = neural net represented flow algorithm
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(b) Inverse coupling layer
FIG. 1:

In (a), a normalizing flow is shown transforming samples z from a prior distribution 7(z) to samples ¢ distributed
according to ps(¢). The mapping f~!(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in

terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling

layer, pf(¢) can be made to approximate a distribution of interest, p(¢). MIT + G Oogl e brain 2019~

Train a neural net as a “flow” g5 = F(¢)

If it is well approximated, we can sample from a Gaussian

It can be done “Normalizing flow” (Real Non-volume preserving map)
Moreover, Jacobian is tractable!

arxiv 1904.120/2, 2003.06413, 2008.05456



Related WO rks Akio Tomiya

Flow based algorithm = neural net represented flow algorithm
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(a) Normalizing flow between prior and output distributions ~1(5) '
(b) Inverse coupling layer
FIG. 1:

In (a), a normalizing flow is shown transforming samples z from a prior distribution 7(z) to samples ¢ distributed
according to ps(¢). The mapping f~!(z) is constructed by composing inverse coupling layers g; ' as defined in Eq. (10) in
terms of neural networks s; and ¢; and shown diagrammatically in (b). By optimizing the neural networks within each coupling

layer, pf(¢) can be made to approximate a distribution of interest, p(¢). MIT + G Oogl e brain 2019~

Their sampling strategy

— Sampling from Gaussian
— Apply an inverse trivializing map (neural network)

— QFT configurations + Tractable Jacobian (by even-odd strategy)
— Metropolis-Hastings test (Detailed balance), exact!



Flow based sampling algorithm

Flow based ML for QFT MIT + Deepmind + ...

Dpe=1"019] o T | doe™" I [9]O[Flo]]

Original integral: hard Easy

Flow-based sampling algorithm

Trivial theory
(no kinetic term, no topology)

No auto-correlation
No correlation for points

“Cooling = change of variable”
via trained neural net
“un-trivializing map”

No auto-correlation

Approx.correlation for points g Metropolis-Hastings with

e_S/e_V((pi)J_l[qo]

Small auto-correlation
Correct correlations

Reject Reject
(Use left conf.) (Use left conf.)



Normalizing flow in Julia

Public code and improvement

GomalizingFlow.jl: A Julia package for Flow-based
sampling algorithm for lattice field theory

Akio Tomiya

Faculty of Technology and Science, International Professional University of Technology,
3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan

Satoshi Terasaki

AtelierArith, 980-0004, Miyagi, Japan

Combinational-convolution for flow-based sampling
algorithm

Akio Tomiya
International Professional University of Technology in Osaka
Faculty of Technology and Science,
International Professional University of Technology,
3-3-1, Umeda, Kita-ku, Osaka, 530-0001, Osaka, Japan
akio@yukawa.kyoto-u.ac. jp

Satoshi Terasaki
AtelierArith
980-0004 Miyagi Japan
s.terasaki@atelier-arith. jp

Akio Tomiya

A public code for
Flow-based sampling
algorithm
not only 2d but also 3d, 4d

Improvement of
convolution for the flow
has been reported in
NurlPS2022

workshop

ithub.com/AtelierArith/GomalizingFlow.jl https://arxiv.org/abs/2208.08903

https://ml4physicalsciences.github.io/2022/ 52
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Summary

MLPhYs Foundation of "Machine Learning Physics’
Grantin-Aid for Translormative Research Areas (A)

1.What and why QCD/lattice QCD?
1.Problem: Long auto-correlation
2. Lattice QCD + Machine learning
1.Trainable smearing + SLHMC = adaptive reweighting

2.Flow-based sampling algorithm

dU(n)
dt

= GUYMm) =

53






